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CrossMark
Abstract

This paper provides a practical approach to stochastic Lie systems,
i.e. stochastic differential equations whose general solutions can be written
as a function depending only on a generic family of particular solutions and
some constants related to initial conditions. We correct the stochastic Lie the-
orem characterising stochastic Lie systems, proving that, contrary to previous
claims, it retains its classical form in the Stratonovich approach. In contrast,
we show that the form of stochastic Lie systems may significantly differ from
the classical one in the It6é formalism. New generalisations of stochastic Lie
systems, like the so-called stochastic foliated Lie systems, are introduced.
Subsequently, we focus on stochastic Lie systems that are Hamiltonian sys-
tems relative to different geometric structures. Special attention is paid to the
symplectic case. We study their stability properties and lay the foundations
of a stochastic energy-momentum method. A stochastic Poisson coalgebra
method is developed to derive superposition rules for Hamiltonian stochastic
Lie systems. Potential applications of our results are presented for biological
stochastic models, stochastic oscillators, stochastic Lotka—Volterra systems,
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Palomba—Goodwin models, among others. Our findings complement previous
approaches by using stochastic differential equations instead of deterministic
equations designed to capture some of the features of models of stochastic
nature.

Keywords: energy—-momentum method, Hamiltonian stochastic Lie system,
Poisson coalgebra, stability, stochastic Lie system, Stratonovich formalism,
superposition rule
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1. Introduction

In its most classical definition, a superposition rule is a t-independent function that describes
the general solution of a t-dependent system of first-order ordinary differential equations
(ODEs) in normal form, a so-called Lie system, via a generic family of its particular solu-
tions and a set of constants related to initial conditions [12, 17, 18, 66]. Superposition rules
are used, for instance, in approximate and numerical methods, as they are applicable to Lie
systems whose exact general solutions in explicit form are unknown [22, 60, 66]. In particular,
the knowledge of a particular finite set of exact and/or approximate solutions of a Lie system
permits one to study its general solution via superposition rules [66].

The superposition rule concept traces its origins back to Sophus Lie’s pioneering and cel-
ebrated book [50], edited by Georg Scheffers. In that work, Lie stated the theorem nowadays
called the Lie theorem, characterising Lie systems. Prior to that, Lie briefly described his
Lie theorem in [49] without a proof, as a criticism of some previous works on superposition
rules by Vessiot, Guldberg, Koningsberger, and other researchers (see [25, 39, 64] and refer-
ences therein). Lie stated that the results on superposition rules for differential equations on
R devised by previous authors were a simple application of his theory on infinitesimal trans-
formation groups. Moreover, [50] laid down the foundations for the theory of Lie systems.
The Lie theorem is also called Lie—Scheffers theorem, as Scheffers took part in editing Lie’s
work [50], or Lie superposition theorem [13]. Previous remarks suggest saying ‘Lie theorem’
rather than ‘Lie—Scheffers theorem’ and using the denomination ‘Lie system’ instead of ‘Lie—
Scheffers system’. Since Vessiot made important contributions to the theory of Lie systems
[22, 25], the term ‘Lie—Vessiot system’ is also an appropriate designation for a Lie system.
Scheffers, however, never independently researched Lie systems, and it is quite unlikely that
he established any findings on the subject on his own [25].
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The Lie theorem states that a t-dependent system of ODEs in normal form admits a super-
position rule if and only if it describes the integral curves of a t-dependent family of vector
fields that can be viewed as a curve in a finite-dimensional Lie algebra of vector fields, a
Vessiot—Guldberg Lie algebra (see [13, 17, 18] for modern approaches and further details).

Lie systems have been thoroughly studied due to their widespread occurrence in phys-
ics and mathematics (see [22, 25], which contain more than 200 references on Lie systems
and related topics). In the 1980s, Winternitz and his colleagues at the Centre de Recherches
Mathématiques of the University of Montreal conducted an extensive study of Lie systems.
In subsequent years, while Winternitz shifted his focus to other subjects, some of his collab-
orators continued exploring the topic [55]. Additionally, scholars from Poland, Italy, Spain,
Mexico, and Russia, such as Grabowski, Marmo, Carinena, de Lucas, Herranz, Flores-Spinoza,
Vorobiev and Ibragimov together with their research teams, began contributing to this field (see
[25, chapter 1], [22] and references therein).

There has been a vast effort to generalise Lie systems to more general situations: #-
dependent Schrodinger equations [20, 22], partial differential equations [55], quasi-Lie
systems [22], foliated Lie systems [17, 67], discrete differential equations [22, 59], stochastic
differential equations [47], superdifferential equations [10], and others [22]. There has also
been much interest in describing the geometrical properties of Lie systems and in using them to
study differential geometric problems (see [3, 4, 16, 25, 31] and references therein). Moreover,
Lie systems are related to important physical and mathematical models, which strongly motiv-
ates their analysis [17, 19, 22, 30, 32]. In this work, we are mainly concerned with the extension
of superposition rules and Lie systems to the realm of stochastic differential equations [47].
In this way, we aim to draw the attention of researchers working on Lie systems to stochastic
models, and vice versa. Therefore, to enhance accessibility to our work, we will provide a
concise overview of various geometric and stochastic concepts.

Stochastic differential equations may describe phenomena that deterministic differential
equations cannot [2]. For example, the probability of disease extinction or outbreak, the quasi-
stationary probability distribution, the final size distribution, and the expected duration of an
epidemic are features that cannot effectively be modelled by deterministic methods [2]. These
and other reasons motivate the great interest in studying stochastic differential equations.
Nevertheless, some deterministic differential equations can capture certain interesting charac-
teristics of models even more easily than stochastic differential equations [15], and stochastic
differential equations offer a complementary alternative view [35].

It is interesting to extend superposition rules to stochastic differential equations. The work
[47] extends the notion of a superposition rule to a class of stochastic first-order ODEs, called
stochastic Lie systems. The authors use a Stratonovich approach, since this makes their form-
alism similar to the classical theory of Lie systems [17, 22, 25]. Moreover, [47] presents a
precise and interesting account of certain local results about stochastic Lie systems and, as a
byproduct, it also explains many technical results on standard Lie systems, which are usually
absent in the literature [17, 18, 25, 61]. Despite its mathematical interest, many of the technical
details given in [47] are frequently omitted in the literature, as they generally have few prac-
tical applications. As noted in [13, 25], standard works on Lie systems, even theoretical ones,
are essentially interested in local aspects and generic points, which leads them to skip many
technical proofs analysed in [47]. Nevertheless, there is mathematical interest in both global
and local technical aspects, as illustrated by [13] for global superposition rules and by [47]. It
is worth stressing that stochastic Lie systems were found to have applications in the descrip-
tion of Brownian motions, economic models such as the Black—Scholes theory of derivative
pricing, and so on [47]. The potential interest of stochastic Lie systems in epidemic models
was very briefly mentioned in [15], without, as far as we know, any further development. It
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is worth noting that there are many new potential applications of the theory of Lie systems to
stochastic models, which have so far remained almost unexplored.

In [47], a stochastic Lie theorem characterising Stratonovich stochastic first-order ODEs
admitting a superposition rule was devised, but it contains a mistake that changes its meaning
and potential applications. More precisely, the direct part of the stochastic Lie theorem in [47]
states that a stochastic Lie system may admit, locally, a superposition rule if its associated
Stratonovich operator is related to a family of vector fields spanning an involutive distribution.
Our present work proves that the vector fields must additionally span a finite-dimensional real
Lie algebra of vector fields, which is a much stronger condition that already appears in the
classical Lie theorem [17, 18, 50]. We also determine the precise point of the mistake in [47],
correct the statement of the stochastic Lie theorem, and provide a counterexample, based on
SIS epidemic models, to illustrate when the stochastic Lie theorem in [47] fails. It is worth
stressing that the differences between the incorrect and the correct versions of the stochastic
Lie theorem have no impact on the applications carefully studied in [47].

Moreover, our work presents a concise introduction to stochastic Lie systems, aiming to
provide a practical approach while avoiding technical details that are not necessary for general
purposes. In this sense, it simplifies the elegant and mostly rigorous mathematical treatment in
[47] by using standard assumptions in mathematical constructions. For instance, we focus on
local results at generic points, which significantly simplifies previously required techniques.

Our correction of the stochastic Lie theorem shows that the stochastic Lie theorem has
no exclusive stochastic features in the Stratonovich approach: it retains the conditions of the
classical Lie theorem. Meanwhile, it should be stressed that the conditions for a stochastic
differential equation in Ito form [63] to become a stochastic Lie system do not follow the
standard structure expected from the classical Lie theorem [17, 18, 22]. This is very important
in practice, as many relevant stochastic differential equations are given in It6 form and must
be translated into the Stratonovich approach [62] in order to apply the methods of our work
and of [47]. In this respect, the relation between the Ito and the Stratonovich approaches is
reviewed, and some examples with potential applications are provided in this work. Although
stochastic differential equations in It6 form may look like stochastic Lie systems, they need
not be. This occurs in certain SIS epidemiological models [34], as shown in this work.

Apart from introducing stochastic Lie systems, this paper suggests the applicability of vari-
ous generalisations of Lie systems [22] to the stochastic domain. This opens a new vast realm
of potential applications in physical, mathematical, and biological models, offering promising
avenues for further exploration. One example is the extension of the theory of foliated Lie
systems [67] to the realm of stochastic differential equations. In fact, we suggest that, in
analogy with the deterministic case, this may arise when studying certain problems of our
stochastic energy—momentum method devised here [52].

By the stochastic Lie theorem, every stochastic Lie system admitting ¢ independent ran-
dom variables is related to a family of ¢ vector fields (if time is considered as a special
‘deterministic’ random variable) parametrised by random variables. All of them can be under-
stood as linear combinations of elements of a finite-dimensional Lie algebra of vector fields
(a so-called Vessiot—Guldberg Lie algebra) with coefficients depending on the random vari-
ables. More particularly, we study stochastic Lie systems admitting a Vessiot—Guldberg Lie
algebra of Hamiltonian vector fields relative to some compatible differential geometric struc-
ture: the Hamiltonian stochastic Lie systems. In particular, we mainly focus on Hamiltonian
stochastic Lie systems relative to symplectic forms, although our theory is easily generalis-
able to other geometric structures and stochastic Lie systems. In this context, the coalgebra
method [25] is extended to Hamiltonian stochastic Lie systems to derive superposition rules.
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This provides an extension to the stochastic realm of the theory of Hamiltonian Lie systems
and their generalisations [25].

Our results are illustrated with many new examples of stochastic Lie systems. In particular,
we study SIS models [34]. SIS models are epidemiological models that assume that individuals
do not acquire immunity after infection. They concern two variables/compartments: S, repres-
enting susceptible individuals, and 7, representing infected individuals in a large population of
size N where a single disease is spreading. SIS systems are usually treated in the literature in
a deterministic manner [15]. This can be used to describe some of their features, but not all, as
some are purely stochastic in nature. Our models can also be used to study stochastic models
arising in Lotka—Volterra systems, Palomba—Goodwin models [58], stochastic oscillators [40,
41], etc. In fact, stochastic Lie systems in general, and Hamiltonian stochastic Lie systems in
particular, seem to have a wide range of potential applications.

We are also concerned with a theory of stability for Hamiltonian stochastic systems and, in
particular, Hamiltonian stochastic Lie systems. Our study is specially concerned with linear
ones, which appear as approximations of nonlinear ones and share some stability properties
with them [7]. An example of a stochastic oscillator with a drift is analysed. Moreover, the
basis for an energy—momentum method [52] for Hamiltonian stochastic differential equations
is established by using some results in [45]. In particular, this allows one to study the relative
equilibrium points of Hamiltonian systems, i.e. points where the dynamics is generated by
Hamiltonian symmetries of the system under study. A characterisation (see theorem 6.5) of
the relative equilibrium points for stochastic Hamiltonian systems in terms of critical points
of their Hamiltonian functions is developed. Our stochastic energy—momentum techniques
are illustrated with a certain type of stochastic oscillator. As a byproduct of our analysis of
the Poisson coalgebra method and the stability of Hamiltonian stochastic Lie systems, strong
constants of motion [45] are briefly studied and illustrated with examples.

The structure of the paper is as follows. Section 2 is a brief introduction to stochastic differ-
ential equations, stochastic Lie systems, and many other notions to be used in this paper. It also
shows the difference between the form of stochastic Lie systems in the Stratonovich and the
Ito approaches. Section 3 is concerned with superposition rules for stochastic Lie systems and
reviews and corrects the previous version of the stochastic Lie theorem. Section 4 deals with
Hamiltonian stochastic Lie systems. In particular, we define the newly proposed stochastic
foliated Lie systems and the Hamiltonian counterparts of stochastic Lie systems. A theory
of stability for stochastic Lie systems is given in section 5. A relative equilibrium notion is
presented and studied in section 6, and a stochastic version of a classical result characterising
relative equilibrium points is presented. Meanwhile, section 7 develops the Poisson coalgebra
method for Hamiltonian stochastic Lie systems. Finally, section 8 presents our conclusions
and future work.

2. Stochastic differential equations and stochastic Lie systems

This section provides a concise introduction to stochastic differential equations and stochastic
Lie systems. We have tried to provide enough information to follow the paper for people work-
ing on stochastic differential equations or the theory of Lie systems.

A detailed survey on the theory of stochastic differential equations can be found in [7, 27],
while the theory of stochastic Lie systems was elaborated for the first time in [47], which offers
a precise formulation of the formalism. To avoid technical details, we will assume objects to
be smooth, locally defined, and problems at generic points satisfying very mild conditions.
Following the classical Lie systems theory in [22, 25, 66], we here provide a definition of a
stochastic Lie system not based on the notion of a superposition rule.
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In a nutshell, a -dependent system of first-order ODEs on an n-dimensional manifold M of
the form

dr :

P =X (1,1, i=1,...,n, VieR, vI'eM, 2.1
for certain functions X! ..., X" € ¥°°(R x M), is deterministic in the sense that an initial
condition in M at a time #, establishes, under mild conditions on the functions X',..., X",

a unique solution giving a position in M for every ¢ € R. Geometrically, the coefficients
X'(t,T),...,X"(¢,T') give rise to a t-parametrised vector field on M of the form

n [ a
i=1

which is formally called a t-dependent vector field. More generally, an R¢-dependent vector
field on a manifold M is a family of vector fields on M parametrised by elements of R’ (see
[22] for details).

Then, equation (2.1) can be extended to allow dependence on certain ‘stochastic processes’
B',...,B’, namely a series of t-dependent random variables satisfying certain appropriate con-
ditions to be set hereafter in detail. This fact is shown by the expression

1
OoT" =X{ (B,T)6t+» X, (BT)odB", i=1,...n, (22)

a=2

for functions Xi,...,X, € € (R x M), with B= (t,B*,...,B"), T = (I'',...,T"), and i =
1,...,n. The symbol o has been used to indicate that (2.2) is understood in the so-called
Stratonovich interpretation, to be briefly explained afterwards. More precisely, (€2, F,P) is a
probability space, where € is a manifold, F is a o-algebra of subsets of €2, and P : F — [0, 1]
is a probability function on F. Each B, : Ry x Q0 — R is a semi-martingale foraa =1,...,r.
Semi-martingales are good integrators relative to the It6 or the Stratonovich integrals due to
their properties. In short, a martingale is a sequence of stochastic processes such that, at a
particular time, the conditional expectation of the next value is equal to the present value,
independently of all previous values.
A stochastic differential equation is then an expression on a manifold M of the form

6T =& (B,T) 0B, 2.3)

where B: R, x Q — R is an R’-valued semi-martingale and &(B,T’) : TzR* — TrM, with
(B,T') € R® x M, describes a Stratonovich operator. Every basis in T*R* allows one to decom-
pose &(B,T") into ¢-components (&(B,I"),...,S4(B,I")) in the chosen basis, which will be
frequently employed hereafter. Geometrically, every component is a mapping

Go:(BT)ER XM &, (B,I') € TrM C TM, a=1,...,1.

which gives rise, for every fixed value of B, to a vector field on M. In fact, &,(B,-): T €
M — &, (B,T) € TrM C TM is a vector field for every fixed B € R and o = 1,...,£. In other
words, &, can be understood as an Rf-parametrised vector field. Every particular solution
to (2.3) is also a semi-martingale I : R, x 2 — M. Moreover, we say that a particular solution
has initial condition I'g € M when I'(0,wy) = Iy for every wy € €2 with probability one. Note
that the standard time can be considered as a random variable 7: (f,wp) € Ry x Q@ — € R,

6
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whose value is independent of €2 and is included as the first component of B. In practice, B is
related to Brownian motions, also called Wiener processes, cadldg martingales, It6 processes
of the form 0X = cdW + pdt for a Brownian motion W and adapted processes o, 1, Lévy pro-
cesses, etc. Remarkably, semi-martingales form the largest class of processes for which the It6
integral can be defined. On the other hand, white noises are not semi-martingales.

We assume that the driving processes are adapted to the natural filtration (F;),>0, i.e. we
only allow processes that evolve consistently with the information available up to the present
time. Vector fields will satisfy local Lipschitz and linear growth conditions (or equivalent geo-
metric hypotheses) guaranteeing existence and uniqueness of integral curves. These conditions
are a stochastic analogue of the usual ODE assumptions, ensuring existence and uniqueness of
solutions to a stochastic differential equation. Unless otherwise stated, the semi-martingales
considered have continuous trajectories (in particular, Brownian motions). If jump processes
such as Lévy noise are allowed, the canonical Stratonovich calculus is not well defined; in
that case, the Marcus integral provides the appropriate extension. Since our results rely on
the Stratonovich calculus on smooth manifolds, we restrict throughout to continuous semi-
martingale drivers.

The solution to (2.3) is of the form

t L t
F(l‘)—F(O):/ 61(B,F)5I+Z/ 6,@»(B,F)O5B;B7 2.4)
p=2"9

0

where the integrals appearing above are Stratonovich integrals. It is relevant to understand
that stochastic differential equations can still be understood in the so-called It6 way, in which
the general solution is also of the form (2.4), but the integrals are assumed to be It6 integrals,
which typically differ from the Stratonovich ones. The choice of approach depends on the
applications to be developed. It should be observed that in the interpretation of stochastic
differential equations according to It6, the symbol o is omitted.

Unless otherwise specified, stochastic differential equations adopt the Stratonovich sense.
This choice is motivated by the Malliavin transfer principle [48, 51], which indicates that a
stochastic generalisation of a deterministic theory generally preserves the main features of
the classical differential theory, though this is not always the case. In other words, Malliavin
transfer principle states that ‘A formula which is true in the deterministic context and which
has a meaning via Stratonovich stochastic calculus, is still valid, but only almost surely’ [48].

Despite the Malliavin transfer principle, stochastic differential equations appear in the It6
sense in many applications [28, 54, 65]. Hence, a manner to deal with such stochastic differ-
ential equations will be studied in this work. Moreover, the analysis of a stochastic analogue
of Lie systems shows some differences with respect to the deterministic theory of Lie systems,
which enriches the theory.

Although every Stratonovich stochastic differential equation is equivalent to another It6
stochastic differential equation, the form of both is different. Hence, one has to take care of
the method employed to study a stochastic differential equation [29]. More exactly, assume
that (2.2) has coefficients that do not depend on B?,...,B’, then the It6 differential equation
admitting the same solutions reads (see [14, p. 137] for details)

L n i V4
; i 1 66 : i .
5T = 61(t,r)+2ﬂ§ 2j§‘ lj ap‘? (1,T) & (1,T) 6t+ﬁ§ 2:6ﬁ(t,F)5B,B, i=1,...n
:]: =

(2.5)



J. Phys. A: Math. Theor. 58 (2025) 415202 E Fernandez-Saiz et al

Note that we have dropped the o sign in the previous expression. It is worth stressing that
the definition of a stochastic Lie system to be given soon relies on the new term appearing
multiplying 6 in (2.5), which is called the drift term [14]. Moreover, the transformation from
the Stratonovich to the It6 form does not change the coefficients with the 53,5 for5=2,...,0.

Example 2.1. Let us consider a stochastic differential equation induced by a semi-martingale
B:(t,z) € Ry x Qs (t,B) € R? consisting of two variables (a deterministic one, #, which
can be understood as a particular type of stochastic variable, and a purely stochastic one, B3,
describing a Brownian motion) of the 1t6 form

SI=1(BN—p—~—BI)dt+1Io (N—1)B, (2.6)

where N is a constant describing the total population of a SIS epidemiological system [34].
Let us assume that o = o (¢). This model describes the dissemination of a single communicable
disease in a susceptible population of size N (see [34]).

The Stratonovich stochastic differential equation related to (2.6) takes the form

3No? (1)

= (—a* (P + B+ )P+ N,B—'y—u—M I)6t+0(t)(N=D)I0dB.
(mr o (o 250 ) e 7))

2.7

This induces a Stratonovich operator between R? and R such that, for each ¢,13,1, one has an
operator

S (1,B,1): (61,6B) € T(, pyR* — &, (1,1) 6t + &, (1,1) 0 6B € TR
for
&1 (t1) = o> ()1 + (—6+3NU22(t)>12+ <N6—7—u—
Sy(t,]))=0c(t)(N=1)1.

o? (;) N2> I

Geometrically, each component of & can be understood as an R?-dependent vector field para-
metrised by the values of  and Wy, although the explicit dependence is only on ¢. More spe-
cifically, &, and &, can be understood as R2-dependent vector fields

2 2 2
[—Uz(t)l3+ <—/5’+ 31\702(t)) F+ (Nﬁ—v—,u— 7 (;)N )I] 5%, o (1) (N—I)I(;ir.

Solutions to (2.7) are given by semi-martingales of the form I" : (£,wp) € Ry X Q +— I(t,wy) €
R determined by an initial condition described by a random variable Iy : {2 — R such that
o(wo) = 1 forevery wy € Q. A

Equations (2.5) and the last example illustrate the central role of the Stratonovich formu-
lation. To make the relation with the It6 formulation explicit, we state the following standard
lemma [43, 56].

Lemma 2.2 (Ito-Stratonovich correction in coordinates). Ler X = (Xl,...,X") be a
Stratonovich diffusion on a manifold M with local coordinates (x'), written as

m
dxj = A’ (x,) dt+ Y By (x,) 0 dB;.
k=1
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Then the corresponding It form is

drl = | A (x,) ZZ — (%) | dr+ ZB}C (x;) dBX.
k=1 j=1

k=1

Equivalently, in tensorial notation

m
Ito Strat 1
X5° = X, +§§ Vi X,
k=1

independently of the choice of torsion-free connection V.

The additional drift term % > i Vx,Xi may not belong to the finite-dimensional Lie
algebra generated by {Xo, ..., X,, }. Therefore, a system that is a Lie system in the Stratonovich
sense may cease to be one in the It6 formulation. This observation is important for applica-
tions, where many models are naturally written in It6 form, and motivates our systematic use
of the Stratonovich framework in the theory of stochastic Lie systems.

Recall that the theoretical utilisation of Stratonovich stochastic equations is justified by
Malliavin’s transfer principle [51], which states that the results from the theory of ODEs remain
applicable, in an analogous way, to stochastic differential equations in Stratonovich form. This
principle is just a general guideline without a proof, which implies that it must be used just as
a general suggestion. Nevertheless, as shown in example 2.1, the relation to the It6 approach
has to be considered too for analysing applications.

Let us now turn to analysing the main type of stochastic differential equations to be studied
in this work (see [47] for the pioneering work on the topic).

Definition 2.3. A stochastic Lie system is a stochastic differential equation on a manifold M
of the form 6" = &(B,T") 0 4B such that B: R, x  — R’ is a semi-martingale and S is a
Stratonovich operator such that

F):(Zb?(B)Xa(T)v---azb?(B)Xa(F)), V[ €M, VBER!, (2.8)
a=1 a=1

for a family of functions b2 : B € R® — b2(B) € R that are assumed to be non-anticipative,
i.e. measurable with respect to the natural filtration, with o =1,...,randa=1,...,¢, and a
certain r-dimensional Lie algebra of vector fields on M spanned by X1, ...,X,. We call the Lie
algebra V= (X1,...,X,) a Vessiot—-Guldberg Lie algebra of the stochastic Lie system (2.8).

As for any other Stratonovich stochastic differential equation (2.3), recall that the
Stratonovich operator & = (&y,...,Sy) of a stochastic Lie system can be considered as an /-
element family consisting of Rf-dependent vector fields on M of the form &,, : (B,T") € R x
M+ G (B,T) € TrM C TM for o = 1,...,£. Moreover, each one of these R-dependent vec-
tor fields on M is a linear combination with functions depending on R’ of a finite-dimensional
Lie algebra of vector fields Xj, ..., X,. Recall that this implies that there exists constants ¢/ 8
with o, 8,7 =1,...,r, so that

(Xo, X5 = anﬁ a,B=1,....r
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It is very important to stress that ¢, 5 are constants. Although a stringent condition, it is justified
by the significant applications and geometric characteristics of Lie systems (refer to [22, 25]
where over a two hundred related works, applications, and key authors of Lie systems are
cited) and stochastic counterparts in [47] and this work. Let us say in advance that, as shown
in following parts of this article, the dimension and nature of the Vessiot—Guldberg Lie algebra
is related to the properties of the stochastic Lie system. In standard Lie systems, where B is
just the time parameter, a solvable Vessiot—Guldberg Lie algebra ensures, for instance, that the
associated Lie system can be integrated by quadratures [21].

Example 2.4. Let us consider a generalisation of a damped harmonic oscillator on TR with
a stochastic part modelled by means of a semi-martingale W, related to a one-dimensional
Wiener process in It6 form, which retrieves as particular cases several models in the previous
literature (cf [40, 41, 53]). In particular, consider adapted coordinates (x,y = x) on TR and the
stochastic differential equation given by

()=o) Q)@ 50 ()m e

where o (1) is any t-dependent function, e.g. quantifying noise, and the functions w(t) and k(r)
are extensions to a stochastic realm of the usual functions relative to the standard deterministic
model for a dissipative harmonic oscillator

i+wi(t)x+k()x=0.

Then, wy(?) is a t-dependent frequency of the oscillator (2.9), while k(7) is frequently used to
describe a friction-like effect.

Let us see how the model (2.9) can be considered as a linear stochastic Lie system. The first
step needed to apply our formalism is to transform the previous stochastic system from an It6
into a Stratonovich one. This can be reached in a simple manner by applying the transformation
equation given in (2.5). Indeed, this expression shows that (2.9) can be related to a Stratonovich
operator of the form

stman=((Lpn wwo-r0n)(0) 6 —ow)0)) @10

Recall that many stochastic differential equations are formulated in the It6 framework.

Once the Stratonovich form has been obtained, let us show that one may apply the theory of
stochastic Lie systems to this example. With this aim, one has to recall that the two components
of the Stratonovich operator (2.10) are related to two f-dependent vector fields, corresponding
to its two components, &, S, of the form

0 yo _ 0 2 2 0 x 0 0 0
Sig t8ig, =ra (G Oxt kO +7 W 2y) 51 S e =~ hyg,

respectively. Note that both -dependent vector fields can be considered as R?-dependent vector
fields that have a trivial dependence on the variable Wy in (¢, W) € R2. To describe our model
with the theory of stochastic Lie systems, one has to find some finite-dimensional Lie algebra
of vector fields on TRZ, let us say VP, such that each component of the Stratonovich operator,
which can be understood as an ]Rz—dependent vector field, becomes a linear combination of a
basis of Vp with coefficients depending on ¢ and W.

10
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In this case, the sought Lie algebra of vector fields can be obtained by considering the vector
fields on TR given by

0 0 0 0
X1 =x— Xy i=y— Xo1 i =x— Xy i=y—. 2.11
=X, 2i=Yas 21 X@y, 2 yay (2.11)
These vector fields span a four-dimensional Lie algebra of vector fields Vp isomorphic to

the Lie algebra gl, of 2 x 2 matrices with real coefficients. The commutation relations in the
basis (2.11) read

Xi1,X12] = —X12, (Xi1,X21] = Xo1, [Xi1,X2] =0,
(X12,X01] = X0 — X1, (X12,X0] = —Xi2, [X21,X0] =Xo1 .

Hence, the Stratonovich operator (2.10) describing our model can be written as
(G (l, 14} ,x,y) = (XIZ — w]% (I)X21 — (k(l‘) + 0'2 (I) /2) X, —0 (Z‘)Xzz) .

Thus, each component of the Stratonovich operator can be written as a linear combination of
the vector fields of a basis of Vp with coefficients depending on ¢ and W (in particular the
coefficients of our model only depend on ¢). Hence, (2.9) is a stochastic Lie system and Vp
becomes an associated Vessiot—Guldberg Lie algebra.

Note that more general models can be considered as stochastic Lie systems by assuming
that their Stratonovich operators take the form

2 2
S(t,Wixy) = | D bas(t, W) Xas, > bls(t,W1)Xag | ,
a,f=1 a,B=1

for arbitrary functions bag,bgﬁ :R?> > R with «, =1,2, which also admit a Vessiot—
Guldberg Lie algebra Vp. One could choose even larger Vessiot—Guldberg Lie algeb-
ras, e.g. the Lie algebra of affine vector fields on R?. Moreover, if the functions
k(t), we(t) and o(t) of our model above take particular values, e.g. constant ones,
it may happen that one could choose a smaller Vessiot—Guldberg Lie algebra. For
instance, if k(f) = w(t) = o(t) =0, the Stratonovich operator (2.10) could be described
via a Vessiot—-Guldberg Lie algebra spanned by Xj,. Depending on the dimension
of the Vessiot—Guldberg Lie algebra, the superposition rule may depend on less or
more particular solutions, making numerical methods simpler or more difficult to
be applied. This fact will be explained in detail after the stochastic Lie theorem in
section 3. A

Example 2.5. An It6 stochastic differential equation ' = &(B,I")0B with S(B,I") taking the
form (2.8) may not be a stochastic Lie system. This shows that stochastic Lie systems, in the
It6 framework, do not match exactly the form given in classical Lie systems. Let us provide an
example of this, with practical implications, using the SIS model in example 2.1. Let us study
a stochastic differential equation 1 = Z(¢,13,1)0B related to the deterministic SIS model for
particular values N = 100, 5 = 1/2, = v = 0, which is indeed a deterministic approximation
of it. More specifically, consider the It6 stochastic differential equation

51 = (50— 1/2)I5t + o (100 — 1) I3, (2.12)
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for a t-dependent parameter o = o(¢t) which is not constant. This model generalises the
stochastic SIS system studied in [34, p. 880]. Consider the vector fields

0 0
Y, = —, Yy :=1—, Yy =1

9
o1 o1 or

which span a three-dimensional Lie algebra Vi of vector fields with commutation relations
[Y1,Y2] = Ya, [Y1,Y3] =2V, [Y2,Y3] =Y5.

In fact, this Lie algebra is isomorphic to sl,, namely the matrix Lie algebra of traceless 2 x 2
matrices with real coefficients. Moreover, the operator Z is such that its components can be
written as linear combinations with 7-dependent coefficients of vector fields of Vi in the form

I(I,B,I) = (50Y2_ 1/2Y3,1000’(Z‘) Yz—O’(l)Y3).

Hence, one notes that (2.12) looks like a stochastic Lie system, but we have to recall that the
operator (2.8) must appear in the Stratonovich form of our stochastic differential equations.
Nevertheless, one has that (2.12) is a stochastic differential equation in the It6 form related to
the Stratonovich stochastic differential equation 6/ = &(t, B,1) o 0B of the form

6l = (—U(t)13 + <—; +1500° (z)) P + (50 — 500007 (1)) 1> 5t+ o (t) (100 =110 8.
(2.13)

The problem is that for different values of o (), which is not constant by assumption, the first
component of &(¢,B,1), namely

—o(t) P + <—; + 1500° (:)) P + (50 — 500007 (1))

is a t-dependent vector field whose values at different values of € R generate the vector space
E=(Z):=10/01,Z, := I’0/0l,Z5 := I’9/dI), which cannot be described by the Vessiot—
Guldberg Lie algebra (Y1, Y, Y3) nor by any other. Indeed, the elements of E cannot be written
as a linear combination of elements of a finite-dimensional Lie algebra. In fact, the successive
Lie brackets

0 0 0
_ 4y —_np —7. .
[22723] =1 oI’ [227[22723]] 21 ol [227[227[22723]“ 3 216817

span an infinite family of linearly independent vector fields on R that must be included in any
Lie algebra containing E. A

There are Ito stochastic differential equations whose coefficients match the form of the
coefficients in (2.8) and they are still stochastic Lie systems. This is due to the fact that the
transformation (2.5) maps the initial (2.2) into a new stochastic differential equation that retains
again the condition (2.8). Notwithstanding, this is not the general case.

The following result will be of utility for applications.

12
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Definition 2.6. We call a t-dependent stochastic Riccati differential equation the Stratonovich
stochastic differential equation on R with stochastic variables given by the semi-martingales

B2,...,B R, x Q— R of the form

2 l 2
M:<Zba(t)ra>&*ZZbﬁa(ﬂF“oéBﬁ, W ER, VieR,  (2.14)
a=0

B=2a=0

for arbitrary -dependent functions b, (7),b,,,(t) withaw =0,1,2and ;t = 2,...,£. Observe that
I'® here denotes the stochastic variable I' raised to the a-th power.

Note that r-dependent stochastic Riccati differential equations are stochastic Lie systems.
The following proposition is immediate.

Proposition 2.7. An I10 differential equation of the form

2 L1
oL = (Z ba (1) Fa) 0t+ > ) bpa (NT6B%, VI eR, WVieR
a=0

B=2a=0

for arbitrary t-dependent functions by (t),b,q(t) with ao=0,1,2 and pp=2,...,0 is also a
t-dependent stochastic Riccati differential equation.

Note that the theory of Lie systems can be generalised to many different realms [22, 25].
In particular, there is the theory of foliated Lie systems [17]. This suggests the following
generalisation.

Definition 2.8 (foliated stochastic Lie system). A stochastic foliated Lie system is a
stochastic differential equations on M of the form

6T =& (B,T) 0 6B, (2.15)

where B: R, x Q — R’ is an R’-valued semi-martingale and &(B,I") : TsR? — TrM is a
Stratonovich operator such that

& (B,T)=> b (BT)Ya(l), j=1,..0, VBER' VleM, (2.16)
a=1

and the vector fields {Y1,...,Y,} on M span an r-dimensional Vessiot—-Guldberg Lie algebra
such that bj‘?‘(B,F), with a =1,...,rand j = 1,...,¢, are first integrals of the vector fields
Yi,...,Y, for every fixed B € R.

There are many potential applications concerning the generalisation to the stochastic
realm of famous types of Lie systems such as matrix, projective Riccati equations, Bernoulli
equations, and so on. As illustrated in this work, stochastic Lie systems have applications
in predator—prey models, oscillator type models, et cetera [5, 40, 62]. Moreover, nonlin-
ear stochastic differential equations are difficult to study. Notwithstanding, under certain
conditions, their linearisation can describe their equilibrium properties [5]. Linear or even
affine stochastic differential equations with stochastic variables related to semi-martingales
are stochastic Lie systems (see [47]).

13
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3. Superposition rules and stochastic Lie systems

Let us study the superposition rule notion for stochastic differential equations and the charac-
terisation of stochastic differential equations admitting a superposition rule. This will lead us
to review and slightly correct some mistakes in the main theorem in [47].

Definition 3.1. A superposition rule for a Stratonovich stochastic differential equation of the
form (2.3) on a manifold M is a function ® : M™+! — M such that, for a generic setI';,..., T, :
Ry x £ — M, of particular solutions of (2.3), the general solution I to (2.3) takes the form

=9 (zIy,...,T),

where z € M is a point to be related to initial conditions.

It is remarkable that superposition rules for stochastic differential equations do not depend
on R, Let us introduce now several concepts that will be useful to describe and calculate
superposition rules for stochastic Lie systems.

The diagonal prolongation to M* of a vector bundle T : F — M is the vector bundle 7'

X (k) X (k)
Fr=Fx-'xXF—M'=Mx --- x M, of the form

7l (f(l),...,f(k)) - <r (f(l)) ,...,T(f(k)>) Yy €F,

with fibers of the form

M.

Fk :FX(])@"'@FX

k
(x(1>7...,x(k)) V(x(l),...,x(k)) eM". 3.1)

(O

Every section e : M — F of the vector bundle 7 has a natural diagonal prolongation to a
section el!l of the vector bundle 7¥ given by

e[k] (X(l),...,X(k)) = (e (X(l)) ,...,e(x(k))) , V(X(l),...,X(k)) GMk.
If we consider that every e(x(,)) takes values in the a-th copy of F within (3.1), one can write
el (X(l),...,X(k)) :e(x(l)) +...+e(x(k)) , V(x(]),...,X(k)) e M,

which is a simple useful notation for applications. The diagonal prolongation of a function
f€ € (M) to M is the function on M* given by

P9y xw) =) + -+ ()
Consider also the sections e(/) of 7, where j € {1,...,k} and e is a section of 7, given by
e (X(l),...,X(k)):0+---+E(X(j))+"'+0, V(X(l),...,X(k))EMk. 3.2)

If {ey,...,e.} is a basis of local sections of the vector bundle 7, then efj ), withj =1,...,kand
i =1,...,r is a basis of local sections of 7. For simplicity, we will frequently write e(x(j)

instead of e(/) if it is clear what we mean.
Due to the obvious canonical isomorphisms

¥ ~Ttm* and  (T"M)Y ~T*M*,

14
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the diagonal prolongation XX of a vector field X € X(M) can be understood as a vector field
XM on M¥, and the diagonal prolongation, a*l, of a one-form a on M can be understood as a
one-form o on M*.

More explicitly, let Y be a vector field on a manifold M. The diagonal prolongation of Y to
MF is the vector field

k

YH (xryseoooxy) == DY (¥w)

a=1

on M* obtained by considering TM* ~ TM x --- x TM (k times). Even more particularly, if
Y = x4 is a vector field on R, then Y = Z§=1 X(a) %.

The diagonal prolongation of a vector field can be extended to 7-dependent vector fields
on M, namely mappings X: R x M — TM such that X(¢,-) is a standard vector field on M,

by assuming that the diagonal extension to M* of the t-dependent vector field X on M is the

t-dependent vector field XM on M* whose value for every fixed valued of ¢, let us say jv(,[k], is
the diagonal prolongation to M* of the vector field X,. The space of diagonal prolongations of
vector fields in X (M) to M* form a Lie subalgebra of X(M*). In fact, the mapping X € X(M)
X € (M) is a Lie algebra morphism, i.e. it is a linear mapping such that

AL [Yl[k},Yz[k]} . VLY eX(M). (3.3)

Let us solve a mistake in the proof of the stochastic Lie theorem in [47]. The issue appears in
the direct part of the statement [47, p. 215, theorem 3.1]. In particular, this makes [47, remark
3.3.(1)] incorrect. To start with, just recall a couple of notions on differential geometry to make
our presentation more accessible for researchers working on stochastic differential equations
or applications.

A generalised distribution D on a manifold M is a correspondence mapping every point
p € M to a subspace D, C T,M. A generalised distribution D is smooth if, around every point
p € M, there exists an open subset U > p and vector fields Xj,...,X; on U such that D, =
(Xi1(p'),...,Xs(p")) forevery p’ € U. The number s may depend on the point p. A generalised
distribution D is involutive if for every pair of vector fields X;,X, on an open subset U C
M such that X;(p),X»(p) € D, for every p € U, we have that [X;,X,](p) € D, at every p €
U. In other words, a generalised distribution is involutive if the space of vector fields taking
values in the generalised distribution is closed relative to the commutator of vector fields. More
practically, it can be proved that a generalised distribution D on M is involutive if, for every
point p € M, there exists a family of vector fields Xi,...,X; spanning the distribution on an
open neighbourhood U of p, namely D,y = (X;(p’),...,X;(p")) for p’ € U, such that the Lie
brackets [X;,Xj], with 1 <i <j <s, also take values in D on U, namely [X;,X;](p") € D, for
every p’ € Uand 1 <i <j < s. In this work, we will say ‘distribution’ instead of ‘generalised
distribution’ to simplify our terminology, as commonly done in the literature. Moreover, all
inspected distributions are smooth.

For the sake of completeness, we will state the problematic part of [47] adopting our nota-
tion and writing in full the contents referenced by the labels used in [47, theorem 3.1]. We
hereafter refer to

15
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‘Moreover, the fact that one has the general property
2 @)Y =@z az) Y, vz ziex (), A€R,

and the hypothesis on {Y1,...,Y.} that they span an involutive distribution*
imply by the classical Frobenius theorem that

D:<Y§"+”,...,Y,[§+H>

is involutive.’

which is incorrect. Let us explain the mistake and provide a counterexample. Our counter-
example is relevant because it demonstrates that certain stochastic differential equations in
the It6 framework are not stochastic Lie systems and do not admit a superposition rule, even
though their form resembles (2.8).

The problem relies on the fact that if Yi,..., Y, span an involutive distribution on M, then
the diagonal prolongations ?[1k+1] yeon ,Y/,[f 1 do not need to span the whole distribution given
by the diagonal prolongations of the vector fields taking values in the distribution spanned by

ylrtl ...,f/,[fﬂ] need not be

Yy,...,Y,. Moreover, as shown next, the distribution spanned by Y;

involutlve at all.
For instance, consider the two vector fields on R, = R\ {0} given by

0 0

vy, =22 v, =22

= ax 2= ox
that span an involutive distribution on R, = {x € R|x # 0}. Indeed, both vector fields span
a distribution D, = (x20/0x,x9/0x) = T,R, for x € R, and every two vector fields taking
values in TR, have a Lie bracket contained in TR,. Notwithstanding, their diagonal prolong-
ations, YES} , Ygs], to RY with s> 2 do not need to span an involutive distribution. Indeed, one

has the diagonal prolongations

SRS d BN~ 0
H= 2 g _;x(“) 0x(a)

a=1

on (R, )*. Their successive commutators become, as stated in [47], diagonal prolongations of
an element of the involutive distribution spanned by Y1, Y, namely TR,. In particular,

k—times

8
ad’;w vyl = [y[v] ool [y[v] Y[‘Y]} ......... ] Zk' %;)kax() <k! k+3§x> 7

for k =1,2,... Notwithstanding, adl;m Yg}, with k € {2,3,4,...}, does not take values in the
1

distribution D = <Y [f] , Y[; ]> at a generic point of RY. Even worse, the smallest (in the sense of

41In [47, theorem 3.1], it is stated that {¥;,..., Y} span an involutive distribution, i.e. [¥;, Y] =31 firYx for
suitable functions f with i,j,k=1,...,r. The proof also notes that {Y1,...,Y,} are ‘in involution,” again meaning
they span an involutive distribution. This terminology may be misleading, as in some references ‘vector fields in
involution’ is used to mean that the vector fields commute.

16
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inclusion) involutive distribution containing Y[ ] [;} spans the whole tangent space to R at

almost every point and a superposition rule for a system described by a generic combination of
Y1,Y> does not exist as it must be constructed from the non-constant first integrals of the vector
fields taking values in an involutive distribution containing Y[ ] [s] for some s > 2 (see the

proof for the Lie theorem in [18, 22, 25, 47]). In fact, the vector ﬁelds YE} = Zs K tt_0

a=1 (a) aX(a> ’
with p=1,... s, on RY are linearly independent almost everywhere. To verify this fact, it is
enough to see that the determinant of their coefficients in the basis aa( . witha=1,...,s,read
X(l) X(z) X(v) 1 1 1
x x DEERY x x x . . x
n X ) 5 , Y X ®)
=X X | ; wa) II &o—xa)
. . I<i<j<s
+1 +1 +1 s—1 s—1 .
"El) xb) " XZY) fay *e X'

which causes the smallest involutive generalised distribution containing Ygs] , Y[zs] on RY to be
equal to TRY almost everywhere. This makes the existence of common non-constant first

integrals for Y; s} Y[s] which will be common non-constant first integrals for all YES} , Yg} yee
impossible.

The previous counterexample is very important as it concerns the stochastic generalisations
of the so-called Abel equations (see [22] and references therein). Hence, the mistake in [47] has
potential practical consequences. Moreover, recall that the SIS model in the It6 form (2.12),
for a non-constant function o (¢), takes the Stratonovich form (2.13). We already showed that
if one tries to write the 7-dependent coefficient of the related Stratonovich operator for 6¢ as
a linear combination with #-dependent functions of a family of vector fields on R spanning a
finite-dimensional Lie algebra, one finds that, for a generic #-dependent function a(t) one has
to obtain a finite-dimensional Lie algebra of vector fields on R containing x>-¢-, x* 8x’ which
is impossible as shown in example 2.1.

Despite the above mistake, the stochastic Lie theorem in [47] can be corrected by assum-
ing that the initial family of vector field Yi,..., Y, close an r-dimensional Lie algebra. Note
that the assumption that Y,...,Y, are linearly independent over R is necessary. Otherwise,
e.g. if Y, = Y,, one obtains that the vector fields YV’ [lm} N ¢ ] are always linearly dependent
and lemma 3.2 of [47] cannot be applied in [47, p. 918]. On the other hand, if Y;,...,Y, are
linearly independent, their diagonal prolongations become linearly independent at a generic
point exactly when m is such that they span a distribution of rank r at a generic point (see [22]).
Then, lemma 3.2 can be applied normally as in [47, p. 918].

Theorem 3.2 (Stochastic Lie theorem). Let
ST =& (B,I') 0B (34

be a stochastic differential equation on M, where B : R x Q — R is a given R¢-valued semi-
martingale and & (B,T) : TgR® — TrM, for B € R® and T' € M, is a Stratonovich operator.
Then, (3.4) admits a superposition rule if and only if

=Y b (B)Yo(T), j=1,...1, (3.5)

for every BERY and T' € M, where the vector fields {Yi,...,Y,} span an r-dimensional
Vessiot—Guldberg Lie algebra on M.

17
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Proof. Let us prove the part of the direct implication of [47, theorem 3.1] that requires some
comments in light of our correction. There always exists a number m such that the diagonal
prolongation of a basis Yi,..., Y, of the Vessiot—Guldberg Lie algebra V of the Lie system to
M™ reaches rank r at a generic point. It was proved in [22] that this happens exactly when
the diagonal prolongations span a distribution of rank r almost everywhere. Let Dy be the dis-
tribution spanned by vector fields YEmH] YL’"H}. Then, Dy has constant rank on an open
subset of M™+1. Since the Lie brackets [Y;,Y;] are linear combinations of the vector fields of
V, with constant coefficients, then their diagonal prolongations to M”*! are linear combin-
ations, with constant coefficients, of the Y Em“],...,YP"H] and D, is integrable. Then, one
can extend Dy to an integrable distribution D of corank n = dimM in M"*! ie. Dy C D on
every point of an open neighbourhood of a point in M"+!. This can always be done in such a
manner that the leaves of D project diffeomorphically onto an open subset of M™ via the canon-
ical projection 7 : (I'¢y),...,['(uy1)) € M (C¢rys -+ T gmy) € M™. The obtained expres-
sion is a local superposition rule for (3.4) as shown in [47, theorem 3.1] based on [47,
proposition 2.4]. O

PR

It is important to highlight that the proof of the stochastic Lie theorem shows, like its non-
stochastic analogue, that if the Vessiot—Guldberg Lie algebra has dimension r, then m, which
standard for the number of particular solutions of the associated superposition rule, must fulfil
the condition mdimM 2 r. This requirement is crucial to guarantee that the diagonal prolong-
ations Y[lm] N ¢ Lm] are linearly independent at a generic point of M. Consequently, a larger
Vessiot—Guldberg Lie algebra on a manifold M is associated with a greater number of partic-
ular solutions for the superposition rule of the related stochastic Lie system, namely m. On
the other hand, larger Vessiot—Guldberg Lie algebras lead to superposition rules for more gen-
eral families of stochastic Lie systems admitting a common superposition rule (see [22] for an
exploration of these facts in the classic non-stochastic context, which is completely analogous).

4. Hamiltonian stochastic Lie systems

This section studies stochastic Lie systems admitting a Vessiot—Guldberg Lie algebra of
Hamiltonian vector fields relative to a geometric structure. In particular, we mainly focus on
Hamiltonian vector fields relative to a symplectic form, but our analysis can be immediately
extended to more general Hamiltonian systems, e.g. related to Poisson manifolds. To motivate
our approach, let us consider a stochastic differential equation on R?, endowed with coordin-
ates (x, y), of the form

dx

a :x(al (I,B) _bly)7
dy
dr

“4.1)
:y(al (taB) —|—b2)(f),

for a function a; € €°° (]Rz) and constants by, b, € R. This system is a stochastic generalisa-
tion of a type of Palomba—Goodwin model, which in turn is a particular case of Lotka—Volterra
system [33, 58]. Our stochastic generalisation is obtained by assuming that the standard -
dependent coefficients depend, additionally, on a semi-martingale B. In this case, the associ-
ated Stratonovich operator takes the form

~ (x(ai1(t,B) = byy)
S (1,B,x,y) = <y (ai (1,B) +b;yc)> ’

18
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which allows us to write
ox
ol = <5y> =6 (1,B,x,y)dt.

Moreover, S(t,B,x,y) can be written as
6(t767x7y) = (611 (talg)Xl +X2)7

where the vector fields X; and X, are given by

0 0 0 0
Xi=x—+y— X, = —bi—+br— |.
1 x8x+y8y’ 2 xy( 18x+ 28}/)
Since [X;,X;] = — X, the vector fields X;, X, span a non-Abelian two-dimensional Lie algebra

h,. Hence, system (4.1) is a stochastic Lie system.
The vector fields X;, X, are Hamiltonian relative to the symplectic structure w = %dx Ady

on O = {(x,y) € R? : xy # 0}. In fact,
tx,w=dlIn|y/x|, tx,w=d(—b1y — bx).

Hence, we call (4.1), a Hamiltonian stochastic Lie system on O. Moreover, (4.1) could be
further generalised, e.g. by considering

6T =& (t,B,x,y) 0t + &' (t,B,x,y) 0 6B,

where & (t,B,x,y) = (f;(t, B)X1 +f>(t,B)X;) for arbitrary functions fi,f, € €°°(R?).
Let us analyse the stochastic SIS model in the Stratonovich approach given by [23]

S1
| BSI
ol = |:/</+S (w1 +v)I| 6t —olodB,

where « is a rate of disease-related death, A is an input of new members, y is a natural mortality,
[3is a transmission rate, -y is a rate of recovery, o2 is the intensity of white noise, j1; = p + 0% /2,
and B is a Brownian motion. Let us consider the case x =0, namely

S=[A— S+ (y—pB)1|ot—cS0dB

0= [—mI—(y—pB)1|ot—oclodB 4.2)

one can consider the vector fields on R? given by

_ 0 0 0 0 - 0

Xii=Sgetls, Xpi=lso—lo, Y=
Then,

X1,X3] = —Xs, [X2,X3] =0, [X1,X;] =0.

Hence, the system becomes a stochastic Lie system. In fact, the Stratonovich operator reads
S (B,T) = (AX3 — X1 + (v — B) X2, —0X1) , (4.3)

where we consider solutions I' : (f,w,) € Ry x Q> (S,1) €U = {(S,I) € R? : SI # 0}. In the
particular case of A =0, one can consider the locally defined symplectic form, away from
points with (S +1)I # 0, of the form

w:dfl /\dfz
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where £, &, are local coordinates such that X; = 8%] and X, = 6%2. The existence of &£, is

due to the fact that X; A X, does not vanish and [X;, X,] = 0 away from points with (S + 1)1 # 0.
Note that system (4.2) can be generalised to consider f-dependent coefficients.

Let us consider the stochastic differential equation on R" with a Wiener process W (see
[40, 41, 68] for analogues on R) in Stratonovich form given by

%) (A0 al) N a' (1) (x -
5<yi)_(b(t) —A())( )5+(b () —)\'(t)) <yi>o5W1, i=1,...,n, (44

which is defined on T*R". This recovers subcases of example 2.4, namely equation (2.9) with
k(t) = o(t) = 0. It can be proved that (2.9) is not Hamiltonian relative to any symplectic form
on R? for arbitrary r-dependent coefficients as it leads to a Vessiot—Guldberg Lie algebra on
the plane related to gl, [25]. But (4.4) can now be related to a Vessiot—Guldberg Lie algebra
V on T*R" spanned by

n a n a
K=Y s 22( 2 y,ay) o 4.5)

X1, X =X, X1,X3] =X>, (X2, X3] = X3,

this Lie algebra is isomorphic to sl, and it is the diagonal prolongation to (T*R)" of a Vessiot—
Guldberg Lie algebra isomorphic to sl; on T*R (see [25]). Moreover, it is known to be a Lie
algebra of Hamiltonian vector fields relative to the symplectic form

n

w:dei/\dyi.

i=1

Hence, X1, X5, X3 have Hamiltonian functions given by

n 2 n n 2
hy = Zl yzi, hy := ;2%%7 hs = ;); (4.6)

relative to w that span a Lie algebra isomorphic to sl,.
Now, (4.4) can be related to Stratonovich operator of the form

Syt W)= Xa+a(®) X —b() X3, N ()Xo +a’ ()X, — b (1) X3),

which turns (4.4) into a Hamiltonian stochastic Lie system and V into an associated Vessiot—
Guldberg Lie algebra isomorphic to sl,. See figure 1 for a particular case of this oscillator.

Definition 4.1. A Hamiltonian stochastic Lie system on a manifold M relative to a probabil-
ity space 2 and a semi-martingale B: R, x  — R’ is a stochastic Lie system related to a
Stratonovich operator $) admitting an associated Vessiot—Guldberg Lie algebra on M consist-
ing of Hamiltonian vector fields relative to some geometric structure on M.

Of course, the above definition means that there are Hamiltonian stochastic Lie systems
related to symplectic, Poisson, Jacobi, contact or Dirac geometries, among others. It is worth
noting that we are mainly interested in Hamiltonian stochastic Lie systems given by

oT = Zb”‘ X5t+ZZb”‘ 1)X, 08B 4.7

i=2 a=l1
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Figure 1. These are two representations of the evolution in terms of the time of a par-
ticular solution to the Hamiltonian Lie system §y = —xdt — AxdW,dx = ydt + Ayo W,
with initial condition (0.2, 0) a semi-martingale W, and a parameter A. The symplectic
structure is w = dx A dy. The system has a strong constant of motion x> 4 y*. The con-
stant of motion is always conserved, but solutions jump back and forward relative to the
deterministic solution.

such that the vector fields Xi,...,X, span an r-dimensional Vessiot—-Guldberg Lie algebra of
Hamiltonian vector fields on M relative to a symplectic form. Note that the coefficients in (4.7)
depend only on time, although dependence on 132, ..., B¢ will be also analysed. In our main
case of study, (4.7) is then related to an ¢-family of #-dependent Hamiltonian functions being
each of them a linear combination with coefficients depending on ¢ of certain Hamiltonian
functions hy,...,h, € €°°(M) contained in a finite-dimensional Lie algebra of Hamiltonian
functions relative to the Poisson bracket of the symplectic manifold. It may happen that the
Hamiltonian functions #4y,...,A, need to be enlarged with an additional constant function to
close on a Lie algebra, but this option is hereafter skipped for simplicity. In particular, the
{-family of -dependent vector fields in (4.7) have f-dependent Hamiltonian functions

hy =Y b (he,  hi=Y b (Oha,  j=2,....0,
a=1 a=1

respectively. It is standard to call hy the Hamiltonian of the stochastic differential equation.
We call (hy,...,h,) a Lie-Hamilton Lie algebra of a Hamiltonian stochastic Lie system.

5. Stability for stochastic Hamiltonian systems

Let us recall the stability theory for stochastic differential equations and apply it to stochastic
Hamiltonian systems. In particular, we will be specially interested in Hamiltonian stochastic
Lie systems. For a survey on the theory for general stability of stochastic differential equations
and other related results see [7, 45, 62].

Consider a stochastic differential equation on M of the particular form

'=6,(tT)it+65(t,T")0dB, vI'e M, VteR, (5.1)
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Figure 2. Representation of a solution to dx = ydt — 0.0080 W, jy = —xdr — 0.0086 W
on R? with initial condition (0, 0) and stochastic variable given by a semi-martingale W,
showing that a non-vanishing stochastic part of the stochastic differential equation may
move solutions away from a deterministic equilibrium point.

where B = (1,8): R, x Q — R’ is an R¢-valued semi-martingale and
& (1,T) =(6,(tT),65(tT)): TgR" — TrM

is the associated Stratonovich operator. As in previous sections, it is assumed that initial
conditions are values in M chosen with probability equal to one. Note that coefficients of
the Stratonovich operator are considered to depend only on ¢ and I'. Stochastic differential
equations of this type are common in the literature [14].

An equilibrium point for the stochastic differential equation (5.1) is a point I', € M such
that

&(I,)=0, VieR.

In this case, the stochastic disturbance, which is described by G, does not act at the equi-
librium point I',. If &5 is not assumed to be zero at the equilibrium point for every f € R,
solutions may move away from that point depending on the values of the stochastic variable
(see figure 2).

Definition 5.1. Consider the Stratonovich differential equation
I'=6(1,I')odB (5.2)

with solutions I': R x Q — M. Given I’y € M and s € R, denote by I'*"' the particular solu-
tion of (5.2) such that T (wy) =Ty for all wy € Q. Let I', € M be an equilibrium point
of (5.2). The equilibrium point I', is almost surely (Lyapunov) stable if for any open neigh-
bourhood U of T', there exists a neighbourhood ¢/ of T, such that for any I'” € U, one has that
' ¢ U almost surely (a.s.).

Let us provide a relevant analogue of the method used in Hamiltonian symplectic systems
to verify stability [1]. Before that, let us provide a definition of strongly conserved quantities
for Hamiltonian stochastic differential equations (see [45, definition 2.2]).

Definition 5.2. A function f€ ¢°°(M) is said to be strongly conserved by a stochastic
Hamiltonian (5.2) if, for any particular solution I' with initial condition I'y, we have that

fT) = f(T).

Strongly conserved quantities can also be defined for systems (5.2) whose Stratonovich
operator also depend on B. The most relevant result for our purposes in the study of stability
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of Hamiltonian stochastic Lie systems is the following proposition (see [45, theorem 2.15] and
references therein).

Proposition 5.3 (Stochastic Dirichlet’s Criterion). Assume that there exists a function f €
€°°(M) such that dfr, = 0 and that the quadratic form d*fr, is positive or negative definite.
If fis a strongly conserved quantity on the solutions of (5.2), then the equilibrium point I, is
almost surely stable.

Let us turn now to Hamiltonian stochastic differential equations on symplectic manifolds.
In this case, we focus on stochastic differential equations of the type

5T = (+,T) 0 6B, (5.3)

where B: R, x Q — R is a semi-martingale and $(,T") : TR — TrM is a Stratonovich
operator such that

Sﬁ(t,F) = (Yl (I,F),...,Yg(l,r)) ,

where Y1,..., Y, stand for /~-dependent Hamiltonian vector fields relative to a symplectic form
w on M with t-dependent Hamiltonian functions 4y,...,h; € €°°(R x M), respectively. The
symplectic structure in this case allows the study of the system via its Hamiltonian functions,
which provides powerful methods to analyse their properties. Note that (5.3) has indeed an
associated function : R x M — R’ of the form

Z:(Zl,...,'ﬁg).

Recall that Zl is normally called the Hamiltonian of the system, but Hamiltonian stochastic
differential equations have several associated Hamiltonians. In fact, #; need not be conserved
even when it is 7-independent. It is immediate that it is not a constant of motion in general as
its Poisson bracket with all the {4, .., s} not need to be zero in general. Notwithstanding, it
is remarkable that f € €’°°(M) is a strong constant of motion for (4.7) if (see [45])

{(Za>t>f}:0, a=1,...,0, vVt e R.

Let us assume that there exists a function f that is a constant of motion of 6" and it also
satisfies that it has a strict minimum at an equilibrium point. Then, 1 has a stable equilibrium
point.

It is immediate to apply the above results to linear or affine stochastic differential equations,
which are stochastic Lie systems, and to choose cases with a Vessiot—Guldberg Lie algebra of
Hamiltonian vector fields relative to a symplectic structure.

Let us consider a particular case of the the stochastic differential equation on R" with
a Wiener process Wy given in (4.4) for A\(r) = X'(¢) =0, 2a(r) = a’(t) = 2, 2b(t) = b () =
—2w? and n= 1. Then, (4.4) can now be related to a Vessiot-Guldberg Lie algebra V on T*R

spanned by
0 1 0 0 0
Xl '_yax7 X2 _5 <xax_y3y> ) X3 = _X7ay

spanning a Lie algebra isomorphic to s, of Hamiltonian vector fields relative to the symplectic
form w = dx A dy. Hence, X, X, X3 have Hamiltonian functions given by
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relative to w that span a Lie algebra isomorphic to sl,. Now, (4.4) can be related to Stratonovich
operator of the form

Sj(xava W) - (Xl +W2X3,2X1 +2w2X3) ,

which turns our particular case of (4.4) into a Hamiltonian stochastic Lie system and V into
an associated Vessiot—Guldberg Lie algebra isomorphic to sl,. Note that this system has two
Hamiltonians

h= (*/2 +w’x? /2,y + w'x?).

Then, y?/2 + w? /2 is the Hamiltonian of the system. The point (0, 0) is an equilibrium point
and the function f = y? /2 4+ w?x? /2 is strongly conserved because {f,f} = {2f.f} = O relative
to the Poisson bracket induced by w. Since d’fis positive definite, then (0, 0) is almost surely
stable.

6. Relative equilibrium points and stochastic Hamiltonian Lie systems

In short, relative equilibrium points for a system of differential equations on a manifold M, in
general, and for a system of stochastic differential equations, in particular, are points where the
dynamics is generated by Lie group actions such that the elements of the group are understood
as symmetries of the differential equations. In this section, we define for the first time relative
equilibrium points for Hamiltonian stochastic differential equations in Stratonovich form of
the particular type (5.3) using the theory in [45, 46].

Let us start by reviewing the notion of symmetries for stochastic differential equations and
symplectic reduction for Hamiltonian stochastic differential equations (see [46, section 2] for
details).

Definition 6.1. Let B: R, x 2 — R’ be a semi-martingale and let &: TR x M — TM be a
Stratonovich operator. A diffeomorphism ¢: M — M is a symmetry of the stochastic differen-
tial equation associated with & if

G (6B,¢ (1)) =T¢ [&(6B,T)],  V(6B,I') € TR x M.

More generally, a Lie group action ® : G x M — M is a Lie group of symmetries of the
stochastic differential equation induced by & if &, :I' € M +— ®(g,I') € M is a symmetry of
G for every g € G. Similarly, we say that ¢ (resp. ®) are symmetries (resp. a Lie group of
symmetries) of the Stratonovich operator G.

Remark 6.2. Note the slight change of notation for the Stratonovich operator in definition
6.1, where for instance the first entry is an element of TR’ instead of an element of R’ as
in previous sections. It is worth stressing that the term ‘Lie group symmetries’ also appears
in the literature on standard and stochastic PDEs with the same meaning of ‘Lie group of
symmetries’ (see [6]).

The relevance of the symmetries of Stratonovich operators is due to the fact that they trans-
form a particular solution of the stochastic differential equations related to it to another partic-
ular solution of the same stochastic differential equation [46, theorem 2.2]. In the case of a Lie
group of symmetries of a stochastic differential equation induced by G, then every element
of the associated Lie group can be understood as a symmetry of the stochastic differential
equation.

Let us give a --dependent generalisation of the stochastic Marsden—Meyer—Weinstein reduc-
tion for Hamiltonian stochastic systems as introduced in [46, theorem 3.1] for the case of
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Hamiltonian stochastic systems (5.3), which essentially amounts to applying a standard reduc-
tion for each particular # € R.

Let (M,w) be a symplectic manifold and let : G x M — M be a Lie group action admitting
a coadjoint equivariant momentum map J: M — g* being also a Lie group of symmetries of
the Hamiltonian functions /: R x M — R’ of a Stratonovich operator §. Every regular z1 € g*
of J gives rise to a function h,: R x J~!(u)/G,, — R* on the manifold M,, =J~'(11)/G,,
determined by the equality 7,,(¢,7,,(-)) = h(t,0,(-)) for every r € R, where ¢,,: J~'(u) = M
is the natural immersion, we assume the isotropy subgroup G,, of the coadjoint action at y to
act freely and properly on J~!(u), and 7, : J~' (1) — M, is the natural projection. Moreover,
one obtains a unique symplectic form w, on M, mduced by the relation 7w, = ¢;w. In turn,
this induces a stochastic Hamiltonian system on the symplectic reduced space (M,,w,,) whose
Stratonovich operator §),, : TR! x M u» — TM,, is given by (cf [46, theorem 3.1])

9,(0B, 1)) =Trm,(H(6B,T)),  VOBETR', VI €M.

Moreover, if I" is a solution of the stochastic Hamiltonian system associated with $ with ini-
tial condition T'g C J=! () at =0, then so is I',, := 7, (T') with respect to £),,, with initial
condition 7, (I'g) at r=0.

In the particular case of stochastic Hamiltonian Lie systems, the reduced stochastic equation
is a stochastic Hamiltonian Lie system related to a Stratonovich operator of the form

) = (Zb‘f‘(t)th([F])v---,Zb?(f)xhg([l“])> ;

where the h# € €°°(M,,) are determined by the conditions A% o 7, = h, o ¢, from the gen-
erators of the Lie—-Hamiltonian Lie algebra of functions 4;,..., A, of the initial Hamiltonian
stochastic Lie system. Note that in the case of Hamiltonian stochastic Lie systems with a
Vessiot—Guldberg Lie algebra V, we require all related Hamiltonian functions, Ay, ..., A, to be
invariant relative to the action of the Lie group ®: G x M — M. This condition is always sat-
isfied for the smallest Lie—Hamilton algebra as it follows from the fact that ) can be reduced
for each time 7.
The above discussion suggests the following definition.

Definition 6.3. Given a Hamiltonian stochastic differential equation (5.3) on M, a relative
equilibrium point I're) € M of (5.3) is a point such that

9o (t,Tre) € Dr,,, a=1,....¢, VieR, 6.1)
where D is the distribution generated by the fundamental vector fields of a Lie group action of
symmetries ¢: G x M — M of (5.3) with a momentum map J: M — g*.

To understand the above condition in terms of the better known characterisation for stand-
ard Hamiltonian systems of differential equations [52], consider a basis {£},, ..., &}, } of funda-
mental vector fields of the Lie group action ® corresponding to a basis {¢,...,§,} of g. Then,
the relation (6.1) amounts to saying that

t Frel <Zfa SM rel Zfa SM rel ) ; Vit S R?
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for certain r-dependent functions f{* € ¥>°(R) fori =1,....,fanda=1,...,r.

Let p=J(I'y) in the above definition. If the Hamiltonian stochastic differential
equation (5.3) can be reduced, then I'ye; € M is contained in J~' (). If J~!'(p1) is a subman-
ifold of M, the evolution of § is contained within J~!(p). This implies that the right-hand
side of (6.1) belongs indeed to Dr,, NTr,,J~'(11). Moreover, the restriction of §) to it can be
reduced to J~'(u)/G,, and the §,, (1,7, (J~'(1))) = 0. In other words, one has the following
proposition, whose inverse is analogue to its deterministic case [26].

Proposition 6.4. Let I'\) € M be a relative equilibrium point for a stochastic Hamiltonian
system (5.3) and let J(Tye1) = 1 be a regular point of J. Let G,, act on J~ (1) freely and properly
so that J=' () /G,, becomes a manifold. Then, the reduction of (5.3) to M,, =J ' (u)/G,, is
such that 7, (I're1) is an equilibrium point of the reduced system and vice versa.

Finally, let us characterise relative equilibrium points for stochastic Hamiltonian systems.

Theorem 6.5 (Stochastic Relative Equilibrium Theorem). A point Iy € M is a relative equi-
librium point for a Hamiltonian stochastic differential equation (4.7) related to h: R x M —
R? if and only if there exist elements & = (€},... &%) € g° for t € R such that (&,Tye) are

~

critical points of the coordinates of the functions h, : g* x M — RY, given by
hy (&,1) =h (,1) — (J(T') — e, &), a=1,....¢,

for p :=J(T,).

Proof. Let us prove the direct part. At the points (§;,I'), the coordinates of the functions
he(&,) : M — R? have a critical point T';e; € M. Hence, each coordinate of h,(&;,-) satisfies
that d(hf* — (J(-),&)) |r,y = 0. This implies that (Xj. ) (Tre1) = Xy, (I're1) and the point Ty is
arelative equilibrium point of . Conversely, if ', is a relative equilibrium point to §3, at each

coordinate of §), one has that (X7, );(Trer) = (§*)um(Lrer) for certain &!,...,&f € g with 1 € R.

Consequently, one has that X5, eey = 0. This implies that each one of these vector fields

has a Hamiltonian function given by Z? — (J — e, &) which has a critical point at the given
point I'. ]

Let us consider a particular case of the the stochastic differential equation on R" with
a Wiener process W given in (4.4) for A\(r) = \'(¢) =0, 2a(t) =a’(t) =2, 2b(t) = b’ (1) =
—2w?, any n, and a constant w (see [24] for similar models). Then, (4.4) can now be related to
a Vessiot—Guldberg Lie algebra V on T*R” spanned by the vector fields (4.5) isomorphic to sl,
and consisting of Hamiltonian vector fields relative to the symplectic formw = Y _/_, dx; A dy;.
Hence, X;,X,,X3 have Hamiltonian functions given by (4.6) relative to w that span a Lie
algebra of functions isomorphic to sl,. Now, (4.4) can be related to Stratonovich operator
of the form

9 ()C,y,l, W) = (Xl +UJ2X3,2X1 +2w2X3) ,

which turns (4.4) into a Hamiltonian stochastic Lie system and V into an associated Vessiot—
Guldberg Lie algebra. Note that this system has two Hamiltonians

h= (00 = (Z (7 /2+2/2).3° (ﬁw%&)) .

i=1 i=1
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Let us consider the Lie symmetries Y; = —wzxka%{ + yka%k for k=1,...,s of the above
Hamiltonian system. In other words, Y, ..., Y, are Hamiltonian relative to w and are Lie sym-
metries of $. Moreover, Y1,...,Y; commute and give rise to an Abelian Lie algebra of vector

fields whose integration gives rise to a Lie group action on TR” and an associated momentum
map

o (X1, 0150003 XnyYn) € TR" — (x%/2—|—w2y%/2,...,xf/2+w2yf/2) € R™.

Since Yi,...,Y; are Hamiltonian Lie symmetries of (h;,h,), the system can be reduced.
Following the approach in [46], one projects the Hamiltonian stochastic system on
JNer,..ye5) with TT_;ci#0 onto J~!(cy,...,c5)/R*. The condition [[;_,c; #0 is

employed to ensure that (cy,...,c;) is a regular value of J and J~!(cy,...,c;) is a subman-
ifold. Note that Y; A... A Y #0and Yy, ..., Y, are tangent to J~!(cy, ..., cy), which gives rise
to a reduced stochastic system on J~!(cy,...,c;)/R® ~ TR"~5, which is Hamiltonian relat-

n

ive to a symplectic form w =/’ |

reads

xi — 0 1 xi 0 2 _Xl' -
0 <y,.> - <_w2 0) <y1> or+ (_2w2 O) ()ﬁ') 0 oWy, i=s+1,...,n. (6.2)

Note that the equilibrium points of the above system are those points such that x| = ys41 =
... =x, =y, = 0, which are the projections of the original ones of the form

dx; A dy;. More exactly, the reduced stochastic system

(n—s)—pairs

X1,V1, .- Xs,5,0,0,...,0,0 | € J7! (C1ynvyCs) -

Note that these points are indeed the relative equilibrium points of our initial stochastic system,
where the components of §) can be written as a linear combination of Y7, ..., Y,. Indeed, at these
points X; +w?X3 = > ;_, ¥; and 2X; + 2w?X3 = >} _, 2Y;. As stated in proposition 6.5, one
ha§ that at these points h' — Y}, x?/2 +w?y? /2 and h* — Y _;_, x? + w?y? have equilibrium
points.

7. Stochastic Poisson coalgebra method

Let us review and extend the Poisson coalgebra method for Hamiltonian systems relative to a
symplectic form. In general, our theory is a stochastic generalisation of what can be found in
the classical setting [25, section 4.2.7]. Although the procedure is very similar to the original
approach, a few key differences allow its application to many new domains. In particular, the
method can still be applied to Hamiltonian stochastic Lie systems by considering that they are
determined by a certain /-family of -dependent Hamiltonian functions. Indeed, our procedure
is a new modification of the coalgebra method for deriving superposition rules for k-symplectic
Lie systems (see [25, section 7.8] and references therein).

It is convenient to stress that the proof of the stochastic Lie theorem shows that a superpos-
ition rule for stochastic Lie systems, in Stratonovich form, can be obtained in a similar manner
to the case of deterministic Lie systems, namely (see [18, 22, 25] for details and examples):

1. Consider a Vessiot—Guldberg Lie algebra of the stochastic Lie system spanned by a basis
of vector fields X, ..., X, on the manifold M.

2. Find the smallest natural number m € N, so that X Em
generic point.

) Yoo ,XLm] are linearly independent at a
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3. Use local coordinates x',...,x" on M and consider this coordinate system to be defined on
each copy of M within M"*! to get a coordinate system {xl@ li=1,...,n,a=0,....m}
on M™*! Obtain first integrals Fy,...,F, common to all the diagonal prolongations
XE’"H], -, X Such that

d(Fy,...,F,
(Fi,.., F) £0. (7.1
1 n
0 (x(o), . ,x(o)>

4. Condition (7.1) allows us to ensure that the equations F; = k;, fori = 1,...,n, enable us

to write the expressions of the variables xéo) . ,x’(’o) in terms of xéu), e ,x’ga), with a =

1,...,m,and ky,...,k,.

5. The obtained expressions lead to a superposition rule depending on a generic family of m
particular solutions and the constants ki, ...,k,. This holds true even in the Stratonovich
stochastic realm.

Note that every Hamiltonian stochastic Lie system is related to a Stratonovich operator £
given by £ components and each one can be understood as a r-dependent vector field. Hence,
£ can be understood as a r-dependent /-vector field, i.e. for every ¢ € R, it is a section of
the /-tangent bundle of velocities TM=TM®---®TM — M, where TM & --- © TM is to be
considered as the Whitney sum of the tangent bundle TM with itself. Similarly, one can pro-
long diagonally $) to a map $H") : TR x M™ — TM™. Moreover, §) is related to a r-dependent
Hamiltonian function /: R x M — R¢ which gives rise, by prolonging diagonally each of its
components for every fixed 7, to a mapping 4" : R x M™ — R’. Additionally, the diagonal
prolongation A" is the -dependent Hamiltonian function related to ). Then, the following
result is immediate.

Proposition 7.1. If § is a Hamiltonian stochastic Lie system admitting a t-dependent
Hamiltonian h: R x M — RY relative to a symplectic form w, then $H" is a Hamiltonian
stochastic Lie system relative to the symplectic form w™ admitting a t-dependent Hamiltonian
Rl R x M™ — RE. In particular, if hy ..., h, is a basis of a Lie—Hamilton Lie algebra for $,
then hgm] yen ,h£m] is a basis of a Lie—-Hamilton Lie algebra for ™.

We have the following immediate proposition.

Proposition 7.2. The space of {-Hamiltonian functions, namely € (M,R%) on a symplectic
manifold (M,w), with Poisson bracket {-,-}., induced by w, is a Poisson algebra relative to
the bracket

('Y, = ({hishi} oo Sheshl} ) s Yh=(hiyeoshe), B = (hi,...,h)) €G> (M,Re) ,
and the multiplication
h-h'=(mhi,....heh}),  Vhh' €€ (MR").

It is worth recalling that the space of /-Hamiltonian functions relative to an /-symplectic
form was not a Poisson algebra. This was due to the fact that the multiplication of ¢-
Hamiltonian functions could not be ensured to be an /-Hamiltonian function as each coordinate
is assumed to be a Hamiltonian function of the same vector field and this cannot be ensured for
their bracket as each coordinate of the bracket is associated with different presymplectic forms
and may be related to different vector fields (see [25, chapter 7]). Here, this problem does not
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appear, since each h;, withi = 1,...,¢, may be the Hamiltonian function of a different vector
field.

For the sake of completeness, let us prove the following result. Recall that
Lie({A}ser,{", }w) is the smallest Lie algebra of Hamiltonian functions relative to w con-

taining {A; },cr.

Proposition 7.3. Let ) be a Hamiltonian stochastic Lie system with respect to a symplectic
form w and possessing a Lie—-Hamilton Lie algebra 20 = (hy,...,h,) relative to the Poisson
bracket related to w. A function f € €°° (M) is a strong constant of motion for ) if commutes
with all the elements of Lie({h; };er,{", }w)- In particular, f is a strong constant of motion if
it commutes with the elements of .

Proof. The function f is a strong constant of motion for §) if
0= X'f, VteR, i=1,...,4 (7.2)

where the X! are the components at a fixed ¢ of the t-dependent /-vector field related to $).
Since Xif = {hi,f}, fori =1,...,¢ and t € R, the result follows. Note also that

{fidbehe ot = bt he b o + o {fihe bt VEE ER.

Inductively, f is commutes with all the elements of Lie({/}scr,{-, }.). Since we restrict
ourselves to the case for a symplectic form w, one has that Lie({%,};cr,{-,*}. ) is included in
20 & R, where R stands for the space of constant functions. And the latter ensures that f is a
strong constant of motion. 0

In Lie-Hamilton systems, a r-dependent Hamiltonian vector field admits for every t € R a
Hamiltonian function belonging to a finite-dimensional Lie algebra of Hamiltonian functions
relative to a Poisson bracket.

Proposition 7.4. Let $ be a Hamiltonian stochastic Lie system with an associated Lie—
Hamilton Lie algebra (20 = (hy,...,h,),{-,-}.) relative to the symplectic form w. Let
{vi,...,v,} be a basis of linear coordinates on g* ~20. Given the momentum map J: T €
M — hy(T) = (J*V)(T') € g%, the pull-back J*C of any Casimir function C on g* is a constant
of motion for §). Moreover, if C = C(vy,...,v,), then

k

k
C<Zh1 (x(a)),...,Zhr(x(a))>, 1<k<m, (1.3)
a=1

a=1

is a constant of motion of $H".

The stochastic Poisson coalgebra method above takes its name from the fact that it is applied
to Hamiltonian stochastic Lie systems and analyses the use of Poisson coalgebras and a so-
called coproduct to obtain superposition rules. In fact, the coproduct is responsible for the
form of (7.3) (see [25]). Although we have focused on Hamiltonian symplectic systems, the
above Poisson coalgebra method can also be applied to Hamiltonian systems relative to many
other geometric structures.

Let us provide a simple example illustrating the above techniques based on the system

-1 D) (o (e oin
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for a Brownian motion W, and any 7-dependent functions g(¢), w(t), and «(¢), which retrieves
certain oscillators in [24] and is connected to numerous physical oscillators with driven
stochastic components. Since

H=(w (X3 +X1 +g()Xs,a(r)Xs),

system (7.4) admits a Vessiot—Guldberg Lie algebra of Hamiltonian vector fields V,, relative
tow =3 _"_, dx; Ady; spanned by

n

9 1 o) o) "0
X ::Zyiﬁix,-’ X22_2Z;<xi8xi_yi8y,->’ X3:__Z;xi8y,~’

Their non-vanishing commutation relations read
[X1,X2] = X, [X1,X3] = 2Xa, [X2,X3] = X, |

[XhXS] - _X4’ [X3’X4] :X57 [X27X4] = _§X47 [X27X5] = EXS

Therefore, the Lie algebra V,, is isomorphic to the Lie algebra sl, x R?, which is a semi-direct
sum of the Lie algebra sl, and an ideal isomorphic to R2. In particular, (X;,X>,X3) is iso-
morphic to sl,, while (X4, Xs) is an Abelian ideal of V, . The vector fields X, ..., X5 are related
to a Lie algebra of Hamiltonian functions spanned by

hy = %Zy?, hy == %Zx;y,-, h3 = %Zx,-z, hy = Zy;, hs = —Zx;, he :=n,
i=1 i=1 i=1 i=1 i=1

(7.5)

Hence, they span a Lie algebra 20, isomorphic to the so-called two-photon algebra [9]. Indeed,
(hy,hy,h3) is isomorphic to sl,, while (h4,hs, he) is a three-dimensional Heisenberg algebra
b3 and the LH algebra 20, is isomorphic to gy ~ sl, X h3. This gives rise to a momentum map
Jo: T € TR" i hy(T)e! +... + he(T')eb € gi. Note that {e,...,eq} is a basis of gy spanning
the same commutation relations than (7.5). Then, one has the Casimir of gy given by °

c=2 (—egel — 642163 — 2e5e4ez) — 4eg (e% — 6361) ,
which gives rise to a constant of motion of (7.4) of the form
F, =J;C=2(—h3hy — hihs — 2hshsh) — 4he (h3 — hshy) .

One can also see that &y, ..., he are the diagonal prolongations to (TR)" of the oscillator (7.4)
for n=1. Then, F, is nothing but the constant of motion (7.3) given for this specific case.
Moreover,

Fi=F,=0, F3=(302—y)+x0 —y)+x 03 —»)’

while further functions F), for n > 3 have a complicated expression.

> The isomorphism (ho, k1, k2, b3, ha, hs) <> (es, —es, e, —2e2,e3,—e;) from the Hamiltonian functions in [11, p.
27] maps the Casimir in [11] into C.
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8. Conclusions and outlook

Our paper provided an introduction to stochastic Lie systems that could draw the attention
of people working on stochastic systems or Lie systems. In this respect, some basic notions
and results in stochastic systems and Lie systems have been explained in detail. In particular,
some types of semi-martingales, which are suitable for use in the theory, have been applied.
Meanwhile, some differential geometry concepts and other ideas for Lie systems have been
explained through initial examples. This paper has skipped many technical details of the intro-
duction to stochastic Lie systems in [47] that can be omitted in practical applications. This
has made our presentation more accessible to a general public. We also reviewed the theory
of stochastic Lie systems, correcting a mistake in the literature to give a solid foundation for
the theory. Some relations between the Stratonovich and the It6 approaches to stochastic Lie
systems have been reviewed. This showed that the stochastic Lie theorem in the It6 framework
is quite different from its classical form. Moreover, we proved that this fact is relevant when
considering practical applications of the theory.

Types and generalisations of stochastic Lie systems have been introduced. In particular,
we have focused on the study of Hamiltonian stochastic Lie systems. The theory of stabil-
ity and relative equilibrium points for Hamiltonian stochastic differential equations has been
developed and, in particular, we have focused in the study of Hamiltonian stochastic Lie sys-
tems relative to symplectic forms. Several examples with potential applications have been
provided so as to illustrate the theory.

Some results concerning the energy—momentum method for stochastic Lie systems have
been obtained, generalising [8]. Many examples concerning physical/epidemiological applic-
ations have been developed. We have also remarked that the theory of Poisson coalgebras can
be developed for our Hamiltonian stochastic Lie systems.

Concerning applications, stochastic SIS models have been analysed. Such models are usu-
ally studied using deterministic methods in the literature. Instead, we approach them here in a
pure stochastic way. Many other physical systems, like different types of stochastic oscillators
with damped terms, have also been analysed.

In the future, we aim to further develop the energy—momentum method for stochastic Lie
systems. This entails the search for criteria ensuring the stability of equilibrium points, for a
Hamiltonian Stratonovich operator, after reduction. Moreover, we expect, as in the determ-
inistic case, to obtain certain degeneracies of the Hamiltonian functions that will need to be
analysed to solve the problem [52]. Note that a further study of the advantages of epidemi-
ological models from a purely stochastic point of view will need to be undertaken. In par-
ticular, we plan to study SIS models that have been traditionally studied in a deterministic
Hamiltonian manner [15, 28] via stochastic Lie systems, and analyse their possible advantages.
There seems to be a quite large new field of applications for Hamiltonian stochastic Lie sys-
tems or Hamiltonian foliated stochastic Lie systems [6, 26]. Moreover, we also plan to study
a stochastic Hamiltonian system appearing in celestial mechanics concerning the stochastic
variation of the inertia tensor [62], biological methods, epidemiological models, coronavirus
systems, etc. Additionally, it would be interesting to study other types of superposition rules
appearing in stochastic differential equations [44] and to apply the Poisson coalgebra method
to particular Hamiltonian stochastic Lie systems. Finally, we would like to analyse the poten-
tial extensions of methods designed for Lie systems, or their generalisations, to stochastic
counterparts. For instance, PDE Lie systems appear in hydrodynamic equations in [38] and the
analysis of conditional symmetries in [36]. It would be interesting to extend, first, the notion of
a stochastic Lie system to PDE Lie systems [22, 61]. Moreover, one of the authors of this work
along with his colleagues are studying hydrodynamical equations with a stochastic character,
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e.g. stochastic Burgers equations [38, 42], so as to generalise the Riemann invariant method
[37] to a stochastic realm, and conditional and standard Lie symmetries for stochastic partial
differential equations, partially attempting to extend the methods of [36] and, potentially, other
works [57].
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