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1. Introduction

The Skinner–Rusk formalism was introduced by R. Skinner and R. Rusk in 1983 [1] (although a previous
description in local coordinates had been developed by K. Kamimura in [2]) in order to deal with mechanical
systems described by singular Lagrangian functions. This formulation combines both the Lagrangian and
Hamiltonian formalism and this is why it is sometimes called unified formalism. The Skinner–Rusk
formalism has been extended to time-dependent systems [3–5], nonholonomic and vakonomic mechanics [6],
higher-order mechanical systems [7–10], control systems [11,12] and field theory [13–18]. Recently, the
Skinner–Rusk unified formalism was extended to contact [19] and k-contact [20] systems. The Skinner–Rusk
unified formalism has several advantages. In first place, we recover the second-order condition even if the
Lagrangian of the system is singular. We also recover the definition of the Legendre map from the constraint
algorithm. Also, both the Lagrangian and Hamiltonian formulations can be recovered from the Skinner–Rusk
formalism by projecting onto their respective phase spaces.
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The use of contact geometry [21–23] to model geometrically the time-dependence in mechanical systems
is very well-known [24–26] and it is, alongside with cosymplectic geometry [27], the natural way to do it.
However, in the last decade, the application of contact geometry to the study of dynamical systems has grown
significantly [28,29]. This is due to the fact that one can use contact structures to describe many different types
of dynamical systems which cannot be described by means of symplectic geometry and standard Hamiltonian
dynamics in a natural way. The dynamical systems which can be modelled using contact structures include
mechanical systems with certain types of damping [30–32], some systems in quantum mechanics [33], circuit
theory [34], control theory [35] and thermodynamics [36,37], among many others [23,25,38–43].

Although contact geometry is a suitable framework when working with systems of ordinary differen-
tial equations, a generalisation is required in order to deal with systems of partial differential equations
describing classical field theories. This generalisation is the so-called k-contact structure [20, 44, 45].
This formulation allows to describe many types of field theories both in the Lagrangian and in the
Hamiltonian formalisms. The k-contact framework allows us to describe geometrically field theories
with damping, some equations from circuit theory, such as the so-called telegrapher’s equation, or the
Burgers’ equation. Recently, a geometric framework has been developed [46] in order to deal with
time-dependent mechanical systems with dissipation using the so-called cocontact geometry. It is still
an open problem to find a geometric setting to describe non-autonomous field theories with damping.

The main goal of this paper is to extend the Skinner–Rusk formalism to time-dependent contact
systems, studying the dynamical equations and the submanifold where they are consistent, and showing
that the Lagrangian and Hamiltonian formalisms can be recovered from this mixed formalism. In first
place, we introduce the phase space of this formulation: the Pontryagin bundleW = R× TQ× T∗Q×R
endowed with natural coordinates (t, qi, vi, pi, s). This manifold has a natural precocontact structure
(dt, η) inherited from the natural cocontact structure of R×T∗Q×R (see [46]). The Hamiltonian function
associated to a Lagrangian function L ∈ C∞(R × TQ × R) is defined as

H = pivi − L(t, qi, vi, s) .

Since the Hamiltonian system (W, dt, η,H) is singular, we need to implement a constraint algorithm in
order to find a submanifold where the Hamiltonian equations are consistent. In the first iteration of the
constraint algorithm we recover the second-order condition, even if the Lagrangian function is singular
(in the Lagrangian formalism, we only recover the sode condition if the Lagrangian is regular). The first
constraint submanifold is the graph of the Legendre map F L. If the Lagrangian function is regular the
constraint algorithm ends in one step and we obtain the usual results by projecting the dynamics onto
the Lagrangian and Hamiltonian phase spaces. If the Lagrangian function is singular, the constraint
algorithm is related to the usual Lagrangian and Hamiltonian constraint algorithms (imposing the sode
condition in the Lagrangian case).

The structure of the present paper is as follows. In Section 2, we review the basics on cocontact geometry,
which is an extension of both contact and cosymplectic geometry. This geometric framework allows us to
develop a Hamiltonian and a Lagrangian formulation for time-dependent contact systems [46]. Section 3 is
devoted to present the Skinner–Rusk unified formulation for cocontact systems. We begin by introducing the
Pontryagin bundle and its natural precocontact structure and state the Lagrangian–Hamiltonian problem. In
Section 4 we recover both the Lagrangian and Hamiltonian formalisms and see that they are equivalent to
the Skinner–Rusk formalisms (imposing the second order-condition if the Lagrangian is singular). Finally,
in Section 5 some examples are studied in full detail. These examples are the Duffing equation [47,48], an
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ascending particle with time-dependent mass and quadratic drag, and a charged particle in a stationary electric
field with a time-dependent constraint.

Throughout this paper, all the manifolds are real, second countable and of class C∞. Mappings are
assumed to be smooth and the sum over crossed repeated indices is understood.

2. Review on time-dependent contact systems

In this first section we will briefly review the basics on cocontact manifolds introduced in [46] and
how this structure can be used to geometrically describe time-dependent contact mechanical systems.

2.1. Cocontact geometry

Definition 2.1. A cocontact structure on a (2n + 2)-dimensional manifold M is a couple of 1-forms
(τ, η) on M such that dτ = 0 and τ ∧ η ∧ (dη)n , 0. In this case, (M, τ, η) is said to be a cocontact
manifold.

Example 2.2. Let Q be an n-dimensional smooth manifold with local coordinates (qi). Let (qi, pi) be
the induced natural coordinates on its cotangent bundle T∗Q. Consider the product manifolds R × T∗Q,
T∗Q × R and R × T∗Q × R with natural coordinates (t, qi, pi), (qi, pi, s) and (t, qi, pi, s) respectively. Let
us also define the following projections:

R × T∗Q × R

R × T∗Q T∗Q × R

T∗Q

ρ1 ρ2

π

π2 π1

Now consider θ0 ∈ Ω1(T∗Q) be the canonical 1-form of the cotangent bundle with local expression
θ0 = pidqi and let θ1 = π∗1θ0 and θ2 = π∗2θ0.

Then we have that (dt, θ2) is a cosymplectic structure in R × T∗Q and η1 = ds − θ1 is a contact form
on T∗Q × R. Furthermore, considering the one-forms in R × T∗Q × R given by θ = ρ∗1θ2 = ρ∗2θ1 = π∗θ0,
τ = dt and η = ds − θ, we have that (τ, η) is a cocontact structure in R × T∗Q × R with local expression:

τ = dt , η = ds − pidqi .

In a cocontact manifold (M, τ, η) we have the so called flat isomorphism

[ : TM −→ T∗M
v 7−→ (i(v)τ)τ + i(v)dη + (i(v)η) η ,

which can be extended to a morphism of C∞(M)-modules:

[ : X ∈ X(M) 7−→ (i(X)τ)τ + i(X)dη + (i(X)η) η ∈ Ω1(M) .
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Proposition 2.3. Given a cocontact manifold (M, τ, η) there exist two vector fields Rt, Rs on M such that
i(Rt)τ = 1 ,
i(Rt)η = 0 ,
i(Rt)dη = 0 ,


i(Rs)τ = 0 ,
i(Rs)η = 1 ,
i(Rs)dη = 0 .

(2.1)

Equivalently, they can be defined as Rt = [−1(τ) and Rs = [−1(η). The vector fields Rt and Rs are called
time and contact Reeb vector fields respectively.

Moreover, on a cocontact manifold we also have the canonical or Darboux coordinates, as the
following theorem establishes:

Theorem 2.4 (Darboux theorem for cocontact manifolds). Given a cocontact manifold (M, τ, η), for
every p ∈ M exists a local chart (U; t, qi, pi, s) containing p such that

τ|U = dt , η|U = ds − pidqi .

In Darboux coordinates, the Reeb vector fields read Rt = ∂/∂t, Rs = ∂/∂s.

2.2. Cocontact Hamiltonian systems

Definition 2.5. A cocontact Hamiltonian system is family (M, τ, η,H) where (τ, η) is a cocontact
structure on M and H : M → R is a Hamiltonian function. The cocontact Hamilton equations for a
curve ψ : I ⊂ R→ M are 

i(ψ′)dη = dH − (LRs H)η − (LRt H)τ ,
i(ψ′)η = −H ,

i(ψ′)τ = 1 ,
(2.2)

where ψ′ : I ⊂ R→ TM is the canonical lift of ψ to the tangent bundle TM. The cocontact Hamiltonian
equations for a vector field X ∈ X(M) are:

i(X)dη = dH − (LRs H)η − (LRt H)τ ,
i(X)η = −H ,

i(X)τ = 1 ,
(2.3)

or equivalently, [(X) = dH −
(
LRs H + H

)
η +

(
1 −LRt H

)
τ. The unique solution to this equations is

called the cocontact Hamiltonian vector field.

Given a curve ψ with local expression ψ(r) = ( f (r), qi(r), pi(r), s(r)), the third equation in (2.2)
imposes that f (r) = r + cnt, thus we will denote r ≡ t, while the other equations read:

q̇i =
∂H
∂pi

,

ṗi = −

(
∂H
∂qi + pi

∂H
∂s

)
,

ṡ = pi
∂H
∂pi
− H .

(2.4)

On the other hand, the local expression of the cocontact Hamiltonian vector field is

X =
∂

∂t
+
∂H
∂pi

∂

∂qi −

(
∂H
∂qi + pi

∂H
∂s

)
∂

∂pi
+

(
pi
∂H
∂pi
− H

)
∂

∂s
.
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2.3. Cocontact Lagrangian systems

Given a smooth n-dimensional manifold Q, consider the product manifold R × TQ × R equipped
with canonical coordinates (t, qi, vi, s). We have the canonical projections

τ1 : R × TQ × R→ R , τ1(t, vq, s) = t ,

τ2 : R × TQ × R→ TQ , τ2(t, vq, s) = vq ,

τ3 : R × TQ × R→ R , τ3(t, vq, s) = s ,

τ0 : R × TQ × R→ R × Q × R , τ0(t, vq, s) = (t, q, s) ,

which are summarized in the following diagram:

R × TQ × R

TQ

R R × Q × R R

Q

τ1 τ3

τ2

τ0

τQ

pr1

pr2

pr3

The usual geometric structures of the tangent bundle can be naturally extended to the cocontact
Lagrangian phase space R×TQ×R. In particular, the vertical endomorphism of T(TQ) yields a vertical
endomorphism J : T(R × TQ × R)→ T(R × TQ × R). In the same way, the Liouville vector field on
the fibre bundle TQ gives a Liouville vector field ∆ ∈ X(R × TQ × R). The local expressions of these
objects in Darboux coordinates are

J =
∂

∂vi ⊗ dqi , ∆ = vi ∂

∂vi .

Definition 2.6. Given a path c : R→ R×Q×R with c = (c1, c2, c3), the prolongation of c to R×TQ×R
is the path c̃ = (c1, c′2, c3) : R −→ R × TQ × R, where c′2 is the velocity of c2. Every path c̃ which is
the prolongation of a path c : R→ R × Q × R is called holonomic. A vector field Γ ∈ X(R × TQ × R)
satisfies the second-order condition (it is a sode) if all of its integral curves are holonomic.

The vector fields satisfying the second-order condition can be characterized by means of the canonical
structures ∆ and J introduced above, since X is a sode if and only if J(Γ) = ∆.

Taking canonical coordinates, if c(r) = (t(r), ci(r), s(r)), its prolongation to R × TQ × R is

c̃(r) =

(
t(r), ci(r),

dci

dr
(r), s(r)

)
.

The local expression of a sode in natural coordinates (t, qi, vi, s) is

Γ = f
∂

∂t
+ vi ∂

∂qi + Gi ∂

∂vi + g
∂

∂s
. (2.5)
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Thus, a sode defines a system of differential equations of the form

dt
dr

= f (t, q, q̇, s) ,
d2qi

dr2 = Gi(t, q, q̇, s) ,
ds
dr

= g(t, q, q̇, s) .

Definition 2.7. A Lagrangian function is a function L ∈ C∞(R × TQ × R). The Lagrangian energy
associated to L is the function EL = ∆(L) − L. The Cartan forms associated to L are

θL = t
J ◦ dL ∈ Ω1(R × TQ × R) , ωL = −dθL ∈ Ω2(R × TQ × R) , (2.6)

where t
J denotes the transpose of the canonical endomorphism introduced above. The contact La-

grangian form is
ηL = ds − θL ∈ Ω1(R × TQ × R) .

Notice that dηL = ωL. The couple (R × TQ × R,L) is a cocontact Lagrangian system.

The local expressions of these objects are

EL = vi∂L

∂vi − L , ηL = ds −
∂L

∂vi dqi ,

dηL = −
∂2L

∂t∂vi dt ∧ dqi −
∂2L

∂q j∂vi dq j ∧ dqi −
∂2L

∂v j∂vi dv j ∧ dqi −
∂2L

∂s∂vi ds ∧ dqi .

Not all cocontact Lagrangian systems (R×TQ×R,L) result in the family (R×TQ×R, τ = dt, ηL, EL)
being a cocontact Hamiltonian system because the condition τ ∧ η ∧ (dηL)n , 0 is not always fulfilled.
The Legendre map characterizes which Lagrangian functions will result in cocontact Hamiltonian
systems.

Definition 2.8. Given a Lagrangian function L ∈ C∞(R × TQ × R), the Legendre map associated to L
is its fibre derivative, considered as a function on the vector bundle τ0 : R × TQ × R→ R × Q × R; that
is, the map FL : R × TQ × R→ R × T∗Q × R with expression

FL(t, q, v, s) =
(
t,F Lt,s(q, v), s

)
,

where v ∈ TqQ and F Lt,s : TQ→ T∗Q is the usual Legendre map associated to the Lagrangian function
Lt,s = L(t, ·, s) : TQ→ R with t and s freezed.

The Cartan forms can also be defined as θL = FL ∗(π∗θ0) and ωL = FL ∗(π∗ω0), where θ0 and
ω0 = −dθ0 are the canonical one- and two-forms of the cotangent bundle and π is the natural projection
π : R × T∗Q × R→ T∗Q (see Example 2.2).

Proposition 2.9. Given a Lagrangian function L the following statements are equivalent:

(i) The Legendre map FL is a local diffeomorphism.

(ii) The fibre Hessian F 2L : R × TQ × R −→ (R × T∗Q × R) ⊗ (R × T∗Q × R) of L is everywhere
nondegenerate (the tensor product is understood to be of vector bundles over R × Q × R).

(iii) The family (R × TQ × R, dt, ηL) is a cocontact manifold.
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This can be checked using that FL(t, qi, vi, s) =
(
t, qi, ∂L/∂vi, s

)
and F 2L(t, qi, vi, s) = (t, qi,Wi j, s),

where Wi j =
(
∂2L/∂vi∂v j

)
.

A Lagrangian function L is regular if the equivalent statements in the previous proposition hold.
Otherwise L is singular. Moreover, L is hyperregular if FL is a global diffeomorphism. Thus, every
regular cocontact Lagrangian system yields the cocontact Hamiltonian system (R × TQ × R, dt, ηL, EL).

Given a regular cocontact Lagrangian system (R × TQ × R,L), the Reeb vector fields RLt ,R
L
s ∈

X(R × TQ × R) are uniquely determined by the relations
i(RLt )dt = 1 ,
i(RLt )ηL = 0 ,
i(RLt )dηL = 0 ,


i(RLs )dt = 0 ,
i(RLs )ηL = 1 ,
i(RLs )dηL = 0 ,

and their local expressions are

RLt =
∂

∂t
−W i j ∂

2L

∂t∂v j

∂

∂vi , RLs =
∂

∂s
−W i j ∂

2L

∂s∂v j

∂

∂vi ,

where W i j is the inverse of the Hessian matrix of the Lagrangian L, namely W i jW jk = δi
k.

If the Lagrangian L is singular, the Reeb vector fields are not uniquely determined, actually, they
may not even exist [46].

2.4. The Herglotz–Euler–Lagrange equations

Definition 2.10. Given a regular cocontact Lagrangian system (R × TQ × R,L) the Herglotz–Euler–
Lagrange equations for a holonomic curve c̃ : I ⊂ R→ R × TQ × R are

i(c̃′)dηL =
(
dEL − (LRLt

EL)dt − (LRLs
EL)ηL

)
◦ c̃ ,

i(c̃′)ηL = −EL ◦ c̃ ,
i(c̃′)dt = 1 ,

(2.7)

where c̃′ : I ⊂ R→ T(R×TQ×R) is the canonical lift of c̃ to T(R×TQ×R). The cocontact Lagrangian
equations for a vector field XL ∈ X(R × TQ × R) are

i(XL)dηL = dEL − (LRLt
EL)dt − (LRLs

EL)ηL ,

i(XL)ηL = −EL ,

i(XL)dt = 1 .

(2.8)

The only vector field solution to these equations is the cocontact Lagrangian vector field.

Remark 2.11. The cocontact Lagrangian vector field of a regular cocontact Lagrangian system (R ×
TQ × R,L) is the cocontact Hamiltonian vector field of the cocontact Hamiltonian system (R × TQ ×
R, dt, ηL, EL).

Given a holonomic curve c̃(r) = (t(r), qi(r), q̇i(r), s(r)), equations (2.7) read

ṫ = 1 , (2.9)
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ṡ = L , (2.10)

ṫ
∂2L

∂t∂vi + q̇ j ∂
2L

∂q j∂vi + q̈ j ∂
2L

∂v j∂vi + ṡ
∂2L

∂s∂vi −
∂L

∂qi =
d
dr

(
∂L

∂vi

)
−
∂L

∂qi =
∂L

∂s
∂L

∂vi . (2.11)

The fact that ṫ = 1 justifies the usual identification t ≡ r. For a vector field XL with local expression

XL = f
∂

∂t
+ F i ∂

∂qi + Gi ∂

∂vi + g
∂

∂s
, equations (2.8) are

(F j − v j)
∂2L

∂t∂v j = 0 , (2.12)

f
∂2L

∂t∂vi + F j ∂
2L

∂q j∂vi + G j ∂
2L

∂v j∂vi + g
∂2L

∂s∂vi −
∂L

∂qi − (F j − v j)
∂2L

∂qi∂v j =
∂L

∂s
∂L

∂vi , (2.13)

(F j − v j)
∂2L

∂vi∂v j = 0 , (2.14)

(F j − v j)
∂2L

∂s∂v j = 0 , (2.15)

L +
∂L

∂v j (F
j − v j) − g = 0 , (2.16)

f = 1 . (2.17)

Theorem 2.12. If L is a regular Lagrangian, XL is a sode and equations (2.12)–(2.17) become

f = 1 , g = L ,
∂2L

∂t∂vi + v j ∂
2L

∂q j∂vi + G j ∂
2L

∂v j∂vi +L
∂2L

∂s∂vi −
∂L

∂qi =
∂L

∂s
∂L

∂vi ,

which, for the integral curves of XL, are the Herglotz–Euler–Lagrange equations (2.9), (2.10) and
(2.11). This sode XL ≡ ΓL is the Herglotz–Euler–Lagrange vector field for the Lagrangian L.

The coordinate expression of the Herglotz–Euler–Lagrange vector field is

ΓL =
∂

∂t
+ vi ∂

∂qi + W ji

(
∂L

∂q j −
∂2L

∂t∂v j − vk ∂2L

∂qk∂v j − L
∂2L

∂s∂v j +
∂L

∂s
∂L

∂v j

)
∂

∂vi +L
∂

∂s
.

An integral curve of ΓL fulfills the Herglotz–Euler–Lagrange equation for dissipative systems:

d
dt

(
∂L

∂vi

)
−
∂L

∂qi =
∂L

∂s
∂L

∂vi , ṡ = L .

3. Skinner–Rusk formalism

Consider a cocontact Lagrangian system with configuration space R × Q × R, where Q is an n-
dimensional manifold, equipped with coordinates (t, qi, s). Consider the product bundles R × TQ × R
with natural coordinates (t, qi, vi, s) and R×T∗Q×R with natural coordinates (t, qi, pi, s), and the natural
projections

τ2 : R × TQ × R→ TQ , τ0 : R × TQ × R→ R × Q × R ,
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π2 : R × T∗Q × R→ T∗Q , π0 : R × T∗Q × R→ R × Q × R .

Let θ0 ∈ Ω1(T∗Q) denote the Liouville 1-form of the cotangent bundle and let ω0 = −dθ0 ∈ Ω2(T∗Q)
be the canonical symplectic form of T∗Q. The local expressions of θ0 and ω0 are

θ0 = pidqi , ω0 = dqi ∧ dpi .

We will denote by θ = π∗2θ0 ∈ Ω1(R × T∗Q × R) and ω = π∗2ω0 ∈ Ω2(R × T∗Q × R) the pull-backs of θ0

and ω0 to R × T∗Q × R.

Definition 3.1. The extended Pontryagin bundle is the Whitney sum

W = R × TQ ×Q T∗Q × R

equipped with the natural submersions

ρ1 : W→ R × TQ × R ,

ρ2 : W→ R × T∗Q × R ,
ρ0 : W→ R × Q × R .

The extended Pontryagin bundle is endowed with natural coordinates (t, qi, vi, pi, s).

Definition 3.2. A path γ : R→W is holonomic if the path ρ1 ◦ γ : R→ R× TQ×R is holonomic, i.e.,
it is the prolongation to R × TQ × R of a path R→ R × Q × R.

A vector field X ∈ X(W) satisfies the second-order condition (or it is a sode) if its integral curves
are holonomic inW.

A holonomic path inW has local expression

γ(τ) =
(
t(τ), qi(τ), q̇i(τ), pi(τ), s(τ)

)
.

The local expression of a sode inW is

X = f
∂

∂t
+ vi ∂

∂qi + F i ∂

∂vi + Gi
∂

∂pi
+ g

∂

∂s
.

In the extended Pontryagin bundleW we have the following canonical structures:

Definition 3.3.

1. The coupling function inW is the map C : W→ R given by

C(w) = i(vq)pq ,

where w = (t, vq, pq, s) ∈ W, q ∈ Q, vq ∈ TQ and pq ∈ T∗Q.

2. The canonical 1-form is the ρ0-semibasic form Θ = ρ∗2θ ∈ Ω1(W). The canonical 2-form is
Ω = −dΘ = ρ∗2ω ∈ Ω2(W).
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3. The canonical precontact 1-form is the ρ0-semibasic form η = ds − Θ ∈ Ω1(W).

In natural coordinates,

Θ = pidqi , η = ds − pidqi , dη = dqi ∧ dpi = Ω .

Definition 3.4. Let L ∈ C∞(R × TQ × R) be a Lagrangian function and consider L = ρ∗1L ∈ C∞(W).
The Hamiltonian function associated to L is the function

H = C − L = pivi − L(t, q j, v j, s) ∈ C∞(W)

Remark 3.5. In [46] the authors introduce the notion of characteristic distribution of a couple of
one-forms (τ, η) ∈ Ω1(M) as C = ker τ ∩ ker η ∩ ker dη. If C has constant rank, we say that the couple
(τ, η) is of class cl(τ, η) = dim M − rankC.

The couple (τ, η) defines a precocontact structure on M if dτ = 0, the characteristic distribution of
the couple (τ, η) has constant rank and cl(τ, η) = 2r + 2 ≥ 2. The triple (M, τ, η) is called a precocontact
manifold. It is important to point out that if rankC = 0, we have a cocontact manifold.

Notice that the couple (dt, η) is a precocontact structure in the Pontryagin bundle W. Hence,
(W, dt, η) is a precocontact manifold and (W, dt, η,H) is a precocontact Hamiltonian system. Thus,
we do not have a unique couple (Rt,Rs) of Reeb vector fields. In fact, in natural coordinates, the general
solution to (2.1) is

Rt =
∂

∂t
+ F i ∂

∂vi ,

Rs =
∂

∂s
+ Gi ∂

∂vi ,

where F i,Gi ∈ C∞(W) are arbitrary functions. Despite this fact, the formalism is independent on
the choice of the Reeb vector fields, as proved in Theorem 5.9 and Corollary 5.10 in [46]. Since the
extended Pontryagin bundleW is trivial over R × R, the vector fields ∂/∂t, ∂/∂s can be canonically
lifted toW and used as Reeb vector fields.

Definition 3.6. The Lagrangian–Hamiltonian problem associated to the precocontact Hamiltonian
system (W, dt, η,H) consists in finding the integral curves of a vector field Z ∈ X(W) such that

[(Z) = dH − (LRsH +H)η + (1 −LRtH)dt .

Equivalently, 
i(Z)dη = dH − (LRsH)η − (LRtH)dt ,

i(Z)η = −H ,

i(Z)dt = 1 .

(3.1)

Thus, the integral curves γ : I ⊂ R→W of Z are solutions to the system of equations
i(γ′)dη = (dH − (LRsH)η − (LRtH)dt) ◦ γ ,
i(γ′)η = −H ◦ γ ,

i(γ′)dt = 1 .

(3.2)
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Since (W, dt, η,H) is a precocontact system, equations (3.1) may not be consistent everywhere
inW. In order to find a submanifoldW f ↪→W (if possible) where equations (3.1) have consistent
solutions, a constraint algorithm is needed. The implementation of this algorithm is described below.

Consider the natural coordinates (t, qi, vi, pi, s) in W and the vector field Z ∈ X(W) with local
expression

Z = A
∂

∂t
+ Bi ∂

∂qi + Ci ∂

∂vi + Di
∂

∂pi
+ E

∂

∂s
.

The left-hand side of equations (3.1) read

i(Z)dη = Bidpi − Didqi ,

i(Z)η = E − piBi ,

i(Z)dt = A .

On the other hand, we have

dH = vidpi +

(
pi −

∂L

∂vi

)
dvi −

∂L

∂t
dt −

∂L

∂qi dqi −
∂L

∂s
ds ,

(LRsH)η = −
∂L

∂s
(ds − pidqi) ,

(LRtH)dt = −
∂L

∂t
dt .

Thus, the second equation in (3.1) gives

E = (Bi − vi)pi +L , (3.3)

the third equation in (3.1) reads
A = 1 , (3.4)

and the first equation in (3.1) gives the conditions

Bi = vi (coefficients in dpi) , (3.5)

pi =
∂L

∂vi (coefficients in dvi) , (3.6)

Di =
∂L

∂qi + pi
∂L

∂s
(coefficients in dqi) . (3.7)

Notice that

• Equations (3.5) are the sode conditions. Hence, the vector field Z is a sode. Then, it is clear that
the holonomy condition arises straightforwardly from the Skinner–Rusk formalism.
• Conditions (3.6) are constraint functions defining the first constraint submanifoldW1 ↪→W.

It is important to notice that the submanifoldW1 is the graph of the Legendre map F L defined
previously 2.8:

W1 = {(vq,F L(t, vq, s)) ∈ W | (t, vq, s) ∈ R × TQ × R} .

This implies that the Skinner–Rusk formalism implies the definition of the Legendre map.
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In virtue of conditions (3.5), (3.6), (3.7), the vector fields Z solution to equations (3.1) have the local
expression

Z =
∂

∂t
+ vi ∂

∂qi + Ci ∂

∂vi +

(
∂L

∂qi + pi
∂L

∂s

)
∂

∂pi
+L

∂

∂s

on the submanifoldW1, where Ci are arbitrary function.
The constraint algorithm continues by demanding the tangency of Z to the first constraint submanifold

W1, in order to ensure that the solutions to the Lagrangian–Hamiltonian problem (the integral curves of
Z) remain in the submanifoldW1. The constraint functions definingW1 are

ξ1
j = p j −

∂L

∂v j ∈ C∞(W) .

Imposing the tangency condition LZξ
1
j = 0 onW1, we get

Ci ∂
2L

∂vi∂v j = −
∂2L

∂t∂v j − vi ∂
2L

∂qi∂v j − L
∂2L

∂s∂v j +
∂L

∂q j + p j
∂L

∂s
(3.8)

onW1. At this point, we have to consider two different cases:

• When the Lagrangian function L is regular, from (3.8) we can determine all the coefficients Ci. In
this case, we have a unique solution and the algorithm finishes in just one step.
• In case the Lagrangian L is singular, equations (3.8) establish some relations among the functions

Ci. In this some of them may remain undetermined and the solutions may not be unique. In
addition, new constraint functions ξ2

j ∈ C∞(W1) may arise. These new constraint function define
a submanifold W2 ↪→ W1 ↪→ W. The constraint algorithm continues by imposing that Z is
tangent toW2 and so on until we get a final constraint submanifoldW f (if possible) where we
can find solutions to (3.1) tangent toW f .

Consider an integral curve γ(r) = (t(r), qi(r), vi(r), pi(r), s(r)) of the vector field Z ∈ X(W). We have
that A = ṫ, Bi = q̇i, Ci = v̇i, Di = ṗi and E = ṡ. Then, equations (3.3), (3.4), (3.5), (3.6) and (3.7) lead
to the local expression of (3.2). In particular,

• Equation (3.5) gives vi = q̇i, namely the holonomy condition.
• Combining equations (3.3) and (3.5), we see that

ṡ = L , (3.9)

which corresponds to equation (2.10).
• Equations (3.7) give

ṗi =
∂L

∂qi + pi
∂L

∂s
= −

(
∂H

∂qi + pi
∂H

∂s

)
,

which are the second set of Hamilton’s equations (2.4). These equations, on the first constraint
submanifoldW1, read

d
dt

(
∂L

∂vi

)
−
∂L

∂qi =
∂L

∂vi

∂L

∂s
,

which are the Herglotz–Euler–Lagrange equations (2.11). Also, the first set of Hamilton’s equations
(2.4) comes from the definition of the Hamiltonian function 3.4 taking into account the holonomy
condition.

Journal of Geometric Mechanics Volume 15, Issue 1, 1–26.



13

• Combining equations (3.6) and (3.9), the tangency condition (3.8) yields the Herglotz–Euler–
Lagrange equations (2.11). It is important to point out that, if the Lagrangian function L is singular,
the Herglotz–Euler–Lagrange equations may be incompatible.

4. Recovering the Lagrangian and Hamiltonian formalisms

The aim of this section is to show the equivalence between the Skinner–Rusk formalism, presented
above, and the Lagrangian and Hamiltonian formalisms.

W

W1

R × TQ × R R × T∗Q × R

W f P1

S f P f

ρ2ρ1
1

F L

F L1

 f

j1

Figure 1. Recovering the Lagrangian and Hamiltonian formalisms.

Let us denote 1 : W1 ↪→W as the natural embedding. Then

ρ1 ◦ 1 : W1 → R × TQ × R and ρ2 ◦ 1 : W1 → R × T∗Q × R

where

(ρ1 ◦ 1)(W1) = R × TQ × R and (ρ2 ◦ 1)(W1) = P1 ⊂ R × T∗Q × R .

Also P1 is a submanifold of R × T∗Q × R whenever L is an almost regular Lagrangian (see [46] for a
precise definition of this concept in the cocontact setting) and we have the equality P1 = R × T∗Q × R
when L is regular. Since W1 = graph(F L), it is diffeomorphic to R × TQ × R and (ρ1 ◦ 1) is a
diffeomorphism. Similarly, under the assumption L is almost-regular, we have

(ρ1 ◦ α)(Wα) = S α ⊂ R × TQ × R and (ρ2 ◦ α)(Wα) = Pα ⊂ P1 ⊂ R × T∗Q × R .

for every Wα submanifold obtained from the constraint algorithm. Let us denote by W f the final
constraint submanifold

W f ↪→ · · · ↪→Wα ↪→ · · · ↪→W1 ↪→W .

Figure 1 summarizes all the applications we have just introduced.

Theorem 4.1. Consider a path σ : I ⊂ R → W1. Therefore σ = (σL, σH) where σL = ρ1 ◦ σ and
σH = F L ◦ σL. Denote also σ0 = ρ0 ◦ σ : I ⊂ R→ R × Q × R. Then:
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• If σ : I ⊂ R → W1 fulfills equations (3.2) on W f then σL is the prolongation of the curve
σ0 = ρ0 ◦ σ, which is a solution of (2.7) on S f . Also the path σH = F L ◦ σ̃0 is a solution to (2.2)
on P f .
• Conversely, let the path σ0 : I ⊂ R → R × Q × R be a solution of (2.7) on S f . Then, the curve
σ = (σL, σH) is a solution of (3.2), where σL := σ̃0 and σH := F L◦ σ̃0. Also path σH is a solution
to (2.2) on P f .

Proof. The proof of this theorem can be easily worked out by using natural coordinates and taking into
account equations (3.3)–(3.8). �

As a consequence, we obtain the following recovering theorems:

Theorem 4.2. Let Z ∈ X(W) be a solution of (3.1) at least onW f and tangent toW f . Then:

• The vector field X ∈ X(R×TQ×R) defined by X ◦ρ1 = Tρ1 ◦Z is a holonomic vector field (tangent
to S f ) which is a solution to the equations (2.8) withH = ρ∗1EL.
• Conversely, every holonomic vector field solution of the equations (2.8) can be recovered in this

way from a vector field Z ∈ X(W) solution of (3.1) onW f and tangent toW f .

Proof. Let Z ∈ X(W) be a solution to equations (3.1) with local expression

Z =
∂

∂t
+ vi ∂

∂qi + Ci ∂

∂vi +

(
∂L

∂qi + pi
∂L

∂s

)
∂

∂pi
+L

∂

∂s
,

where the functions Ci satisfy the relations (3.8). Thus, the vector field X ∈ X(R × TQ × R) has local
expression

X =
∂

∂t
+ vi ∂

∂qi + Ci ∂

∂vi + L
∂

∂s
,

where the functions Ci satisfy the relations (3.8). It is clear that X is a holonomic vector field and that it

satisfies equations (2.8) withH = vi ∂L
∂vi − L, where ρ∗1L = L.

Moreover, every holonomic vector field X ∈ X(R × TQ × R) solution to (2.8) comes from a vector

field Z ∈ X(W) by considering that pi =
∂L

∂vi . �

Similarly, we also recover the Hamiltonian formalism:

Theorem 4.3. Let Z ∈ X(W) be a solution of (3.1) at least onW f and tangent toW f . Then, the vector
field Y ∈ X(R × T∗Q × R) defined by Y ◦ ρ2 = Tρ2 ◦ Z is a solution to the equations (2.3) on P f and
tangent to P f , assuming that ρ∗2H = H .

Conversely, every vector field solution of the equations (2.3) can be recovered in this way from a
vector field Z ∈ X(W) solution of (3.1) onW f and tangent toW f , assuming that ρ∗2H = H .

The proof of this theorem is straightforward by taking natural coordinates inW and in R × T∗Q × R.

Remark 4.4. The results presented in this section are analogous to those obtained for the Skinner–Rusk
formalism for time-dependent dynamical systems. Intrinsic proves of the corresponding theorems can
be found in [3] (see also [4]).

Remark 4.5. It is important to remark that in the case of singular Lagrangians, the two constraint
algorithms are equivalent only when the second-order condition is imposed as an additional condition in
the Lagrangian side [1, 49].
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5. Examples

5.1. The Duffing equation

The Duffing equation [47, p. 82], [48], named after G. Duffing, is a non-linear second-order
differential equation which can be used to model certain damped and forced oscillators. The Duffing
equation is

ẍ + δẋ + αx + βx3 = γ cosωt , (5.1)

where α, β, γ, δ, ω are constant parameters. Notice that if γ = 0, which means that the system does not
depend on time, we are in the case of contact mechanics. On the other hand if δ = 0, namely there is no
damping, we have a cosymplectic system. Finally, if β = δ = γ = 0, we obtain the equation of a simple
harmonic oscillator. In physical terms, equation (5.1) models a damped forced oscillator with a stiffness
different from the one obtained by Hooke’s law.

It is clear that this system is not Hamiltonian nor Lagrangian in a standard sense. However, we will
see that we can provide a geometric description of it as a time-dependent contact Hamiltonian system.

Consider the configuration space Q = R with canonical coordinate (x). Consider now the product
bundle R × TQ × R with natural coordinates (t, x, v, s) and the Lagrangian function

L : R × TQ × R −→ R

given by

L(t, x, v, s) =
1
2

v2 −
1
2
αx2 −

1
4
βx4 − δs + γx cosωt . (5.2)

LetW be the extended Pontryagin bundle

W = R × TQ ×Q T∗Q × R

equipped with natural coordinates (t, x, v, p, s). The coupling function is C(t, x, v, p, s) = pv. The couple
of one-forms (dt, η = ds − pdx) define a precocontact structure onW. The dissipative Reeb vector
field is Rs = ∂/∂s and the time Reeb vector field is Rt = ∂/∂t. We also have that dη = dx ∧ dp. The
Hamiltonian function associated to the Lagrangian function (5.2) is the function

H = C − L = pv −
1
2

v2 +
1
2
αx2 +

1
4
βx4 + δs − γx cosωt ∈ C∞(W) .

We have that

dH = γωx sin(ωt)dt + (αx + βx3 − γ cosωt)dx + (p − v)dv + vdp + δds ,

and hence

dH − Rs(H)η − Rt(H)dt = (αx + βx3 + δp − γ cosωt)dx + (p − v)dv + vdp .

Given a vector field Z ∈ X(W) with local expression

Z = A
∂

∂t
+ B

∂

∂x
+ C

∂

∂v
+ D

∂

∂p
+ E

∂

∂s
,
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equations (3.1) give the conditions

A = 1 ,
B = v ,

D = −αx − βx3 − δp + γ cosωt ,

p − v = 0 ,
E = pB −H = L .

Thus, the vector field Z is a sode and has the expression

Z =
∂

∂t
+ v

∂

∂x
+ C

∂

∂v
+ (−αx − βx3 − δp + γ cosωt)

∂

∂p
+L

∂

∂s
,

and we have the constraint function
ξ1 = p − v = 0 ,

which defines the first constraint submanifold W1 ↪→ W. The constraint algorithm continues by
demanding the tangency of the vector field Z toW1. Hence,

0 = LZξ1 = −αx − βx3 − δv + γ cosωt −C ,

determining the last coefficient of the vector field Z

C = −αx − βx3 − δv + γ cosωt ,

and no new constraints appear. Then, we have the unique solution

Z =
∂

∂t
+ v

∂

∂x
+ (−αx − βx3 − δv + γ cosωt)

∂

∂v
+ (−αx − βx3 − δv + γ cosωt)

∂

∂p
+L

∂

∂s
.

Projecting onto each factor ofW, namely using the projections ρ1 : W→ R × TQ × R and ρ2 : W→

R × T∗Q × R, we can recover both the Lagrangian and the Hamiltonian vector fields. In the Lagrangian
formalism we obtain the holonomic vector field X ∈ X(R × TQ × R) given by

X =
∂

∂t
+ v

∂

∂x
+ (−αx − βx3 − δv + γ cosωt)

∂

∂v
+L

∂

∂s
.

We can see that the integral curves of X satisfy the Duffing equation

ẍ + δẋ + αx + βx3 = γ cosωt .

On the other hand, projecting with ρ2, we obtain the Hamiltonian vector field Y ∈ X(R× T∗Q×R) given
by

Y =
∂

∂t
+ p

∂

∂x
+ (−αx − βx3 − δp + γ cosωt)

∂

∂p
+

(
1
2

p2 −
1
2
αx2 −

1
4
βx4 − δs + γx cosωt

)
∂

∂s
.

Notice that the integral curves of Y also satisfy the Duffing equation (5.1). Thus, we have shown
that although the Duffing equation cannot be formulated as a standard Hamiltonian system, it can be
described as a cocontact Lagrangian or Hamiltonian system.
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5.2. System with time-dependent mass and quadratic drag

In this example we will consider a system of time-dependent mass with an engine providing an
ascending force F > 0 and subjected to a drag proportional to the square of the velocity.

Let Q = R with coordinate (y) be the configuration manifold of our system and consider the
Lagrangian function

L : R × TQ × R −→ R

given by

L(t, y, v, s) =
1
2

m(t)v2 +
m(t)g

2γ

(
e−2γy − 1

)
− 2γvs +

1
2γ

F , (5.3)

where γ is the drag coefficient and the mass is given by the monotone decreasing function m(t). Consider
the extended Pontryagin bundle

W = R × TQ ×Q T∗Q × R

endowed with canonical coordinates (t, y, v, p, s), the coupling function C(t, y, v, p, s) = pv and the
1-forms τ = dt and η = ds − pdy. We have that (W, τ, η) is a precocontact manifold, with Reeb vector
fields Rt = ∂/∂t, Rs = ∂/∂s. The Hamiltonian functionH associated with the Lagrangian (5.3) is

H = C − L = pv −
1
2

m(t)v2 −
m(t)g

2γ

(
e−2γy − 1

)
+ 2γvs −

1
2γ

F ∈ C∞(W) .

In this case, we have

dH − Rs(H)η − Rt(H)dt =

= vdp + (p − m(t)v + 2γs)dv +
(
m(t)ge−2γy + 2γvp

)
dy +

∂H

∂t
dt + 2γvds .

Consider a vector field Z ∈ X(W) with coordinate expression

Z = A
∂

∂t
+ B

∂

∂y
+ C

∂

∂v
+ D

∂

∂p
+ E

∂

∂s
.

Then, equations (3.1) read 

A = 1 ,
B = v ,

D = −m(t)ge−2γy − 2γvp ,

p − m(t)v + 2γs = 0 ,
E = pB −H = L .

Hence, the vector field Z is a sode and has the expression

Z =
∂

∂t
+ v

∂

∂y
+ C

∂

∂v
+

(
−m(t)ge−2γy − 2γvp

) ∂

∂p
+L

∂

∂s
,

and we obtain the constraint function

ξ1 = p − m(t)v + 2γs ,
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defining the first constraint submanifoldW1 ↪→W. Demanding the tangency of Z toW1, we obtain

LZξ1 = −γm(t)v2 − m(t)C − ṁ(t)v − m(t)g + F ,

which determines the remaining coefficient of the vector field Z:

C =
F

m(t)
− γv2 −

ṁ(t)
m(t)

v − g

and no new constraints appear. Thus, we have the unique solution

Z =
∂

∂t
+ v

∂

∂y
+

(
F

m(t)
− γv2 −

ṁ(t)
m(t)

v − g
)
∂

∂v
+

(
−m(t)ge−2γy − 2γvp

) ∂

∂p
+L

∂

∂s
.

We can project onto each factor of W by using the projections ρ1 : W → R × TQ × R and
ρ2 : W→ R× T∗Q×R thus recovering the Lagrangian and Hamiltonian formalisms. In the Lagrangian
formalism we get the sode X ∈ X(R × TQ × R) given by

X =
∂

∂t
+ v

∂

∂y
+

(
F

m(t)
− γv2 −

ṁ(t)
m(t)

v − g
)
∂

∂v
+L

∂

∂s
.

The integral curves of X satisfy the second-order differential equation
ẏ = v ,

v̇ =
F

m(t)
− γv2 −

ṁ(t)
m(t)

v − g ,

which can be rewritten as 
ẏ = v ,
d
dt

(m(t)v) = F − m(t)g − γm(t)v2 .

5.3. Charged particle in electric field with friction with a time-dependent constraint

Consider a system where we have a charged particle with mass m and charge k in the plane immersed
in a stationary electric field E = (E1, E2, E3) = −∇φ and subjected to a time-dependent constraint given
by f (t,q) = 0, where ∇ denotes the Euclidean gradient and q = (x, y, z). Consider the phase space
TR4, endowed with natural coordinates (x, y, z, λ; vx, vy, vz, vλ), and the contact Lagrangian function
L : R × TR4 × R→ R given by

L(t,q, λ, v, vλ, s) =
1
2

mv2 − kφ(q) + λ f (t,q) − γs , (5.4)

where v = (vx, vy, vz) and v =
√

v2
x + v2

y + v2
z and γ is the friction coefficient. Since we have introduced

the restriction f (t,q) = 0 via a Lagrange multiplier, it is clear that the Lagrangian (5.4) is singular.
Consider the extended Pontryagin bundle

W = R × TR4 ×R4 T∗R4 × R
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endowed with natural coordinates (t, x, y, z, λ, vx, vy, vz, vλ, px, py, pλ, s). We have that (dt, η), where

η = ds − pxdx − pydy − pzdz − pλdλ ,

is a precocontact structure on W. The coupling function is C = pxvx + pyvy + pzvz + pλvλ and the
Hamiltonian functionH = C − L associated to the Lagrangian L is

H = pxvx + pyvy + pzvz + pλvλ −
1
2

mv2 + kφ(q) − λ f (t,q) + γs .

Thus,

dH − Rs(H)η − Rt(H)dt = vxdpx + vydpy + vzdpz + vλdpλ
+ (px − mvx)dvx + (py − mvy)dvy + (pz − mvz)dvz + pλdvλ

+

(
k
∂φ

∂x
− λ

∂ f
∂x

+ γpx

)
dx +

(
k
∂φ

∂y
− λ

∂ f
∂y

+ γpy

)
dy

+

(
k
∂φ

∂z
− λ

∂ f
∂z

+ γpz

)
dz +

(
γpλ − f (t,q)

)
dλ .

Let Z be a vector field onW with local expression

Z = A
∂

∂t
+ Bx

∂

∂x
+ By

∂

∂y
+ Bz

∂

∂z
+ Bλ

∂

∂λ
+ Cx

∂

∂vx
+ Cy

∂

∂vy
+ Cz

∂

∂vz
+ Cλ

∂

∂vλ

+ Dx
∂

∂px
+ Dy

∂

∂py
+ Dz

∂

∂pz
+ Dλ

∂

∂pλ
+ E

∂

∂s
,

then, equations (3.1) yield the conditions

A = 1 , Bx = vx , By = vy , Bz = vz , Bλ = vλ ,

Dx = λ
∂ f
∂x
− k

∂φ

∂x
− γpx , Dy = λ

∂ f
∂y
− k

∂φ

∂y
− γpy ,

Dz = λ
∂ f
∂z
− k

∂φ

∂z
− γpz , Dλ = f (t,q) − γpλ ,

px − mvx = 0 , py − mvy = 0 , pz − mvz = 0 , pλ = 0 ,
E = pxBx + pyBy + pzBz + pλBλ −H = L .

Thus, the vector field Z is

Z =
∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+ vλ

∂

∂λ
+ Cx

∂

∂vx
+ Cy

∂

∂vy
+ Cz

∂

∂vz
+ Cλ

∂

∂vλ

+

(
λ
∂ f
∂x
− k

∂φ

∂x
− γmvx

)
∂

∂px
+

(
λ
∂ f
∂y
− k

∂φ

∂y
− γmvy

)
∂

∂py

+

(
λ
∂ f
∂z
− k

∂φ

∂z
− γmvz

)
∂

∂pz
− f (t,q)

∂

∂pλ
+L

∂

∂s
,

and we get the constraints

ξx
1 ≡ px − mvx = 0 , ξ

y
1 ≡ py − mvy = 0 , ξz

1 ≡ pz − mvz = 0 , ξλ1 ≡ pλ = 0 ,

Journal of Geometric Mechanics Volume 15, Issue 1, 1–26.



20

defining the first constraint submanifoldW1 ↪→W. The constraint algorithm continues by demanding
the tangency of the vector field Z to the submanifoldW1:

LZξ
x
1 = λ

∂ f
∂x
− k

∂φ

∂x
− γpx − mCx = 0

LZξ
y
1 = λ

∂ f
∂y
− k

∂φ

∂y
− γpy − mCy = 0

LZξ
z
1 = λ

∂ f
∂z
− k

∂φ

∂z
− γpz − mCz = 0

LZξ
λ
1 = f (t,q) = 0 ,

thus determining the coefficients Cx,Cy,Cz. In addition, we have obtained the constraint function

ξ2 ≡ f (t,q) = 0 ,

defining the second constraint submanifoldW2 ↪→W1 ↪→W. Then, the vector field Z has the form

Z =
∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
+ vλ

∂

∂λ
+

1
m

(
λ
∂ f
∂x
− k

∂φ

∂x
− γmvx

)
∂

∂vx

+
1
m

(
λ
∂ f
∂y
− k

∂φ

∂y
− γmvy

)
∂

∂vy
+

1
m

(
λ
∂ f
∂z
− k

∂φ

∂z
− γmvz

)
∂

∂vz
+ Cλ

∂

∂vλ

+

(
λ
∂ f
∂x
− k

∂φ

∂x
− γmvx

)
∂

∂px
+

(
λ
∂ f
∂y
− k

∂φ

∂y
− γmvy

)
∂

∂py

+

(
λ
∂ f
∂z
− k

∂φ

∂z
− γmvz

)
∂

∂pz
+L

∂

∂s
.

Imposing the tangency toW2, we condition

LZξ2 =
∂ f
∂t

+ vx
∂ f
∂x

+ vy
∂ f
∂y

+ vz
∂ f
∂z

= 0 ,

which is a new constraint function ξ3 ≡
∂ f
∂t

+ vx
∂ f
∂x

+ vy
∂ f
∂y

+ vz
∂ f
∂z

=
∂ f
∂t

+ v · ∇ f = 0 . This process has

to be iterated until no new constraints appear, depending on the function f .
Now we are going to consider the particular case where f (t,q) = z − t. In this case,

ξ3 ≡ vz − 1 = 0 .

Thus, imposing the tangency of Z to ξ3 we get the condition

LZξ3 =
1
m

(
λ − k

∂φ

∂z
− γmvz

)
= 0 ,

giving a new constraint function

ξ4 ≡ λ − k
∂φ

∂z
− γm = 0 .
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Figure 2. Trajectory of the charged particle (blue) and position of the fixed charge (red).

Then, the vector field Z is

Z =
∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+
∂

∂z
+ vλ

∂

∂λ
+

1
m

(
−k
∂φ

∂x
− γmvx

)
∂

∂vx
+

1
m

(
−k
∂φ

∂y
− γmvy

)
∂

∂vy

+ Cλ

∂

∂vλ
+

(
−k
∂φ

∂x
− γmvx

)
∂

∂px
+

(
−k
∂φ

∂y
− γmvy

)
∂

∂py
+L

∂

∂s
.

Imposing the tangency condition with respect to ξ4, we obtain that

vλ = k
(
∂2φ

∂x∂z
vx +

∂2φ

∂y∂z
vy +

∂2φ

∂y2

)
.

The tangency condition with respect to this constraint determines the last coefficient of the vector field,

Cλ = k
(
v2

x
∂3φ

∂x2∂z
+ v2

y
∂3φ

∂y2∂z
+ (1 + 2vx)vy

∂3φ

∂x∂y∂z
+

+ 2vx
∂3φ

∂x∂z2 +
∂3φ

∂y∂z2 +
∂3φ

∂z3 −

(
k
m
∂φ

∂x
+ γvx

)
∂2φ

∂x∂z
−

(
k
m
∂φ

∂y
+ γvy

)
∂2φ

∂y∂z

)
,

and no new constraints arise. In conclusion, the vector field Z has local expression

Z =
∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+
∂

∂z
+ k

(
∂2φ

∂x∂z
vx +

∂2φ

∂y∂z
vy +

∂2φ

∂y2

)
∂

∂λ
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+
1
m

(
−k
∂φ

∂x
− γmvx

)
∂

∂vx
+

1
m

(
−k
∂φ

∂y
− γmvy

)
∂

∂vy
+ Cλ

∂

∂vλ

+

(
−k
∂φ

∂x
− γmvx

)
∂

∂px
+

(
−k
∂φ

∂y
− γmvy

)
∂

∂py
+L

∂

∂s
.

The integral curves of the vector field Z satisfy the system of differential equations

mẍ = −k
∂φ

∂x
− γmvx , mÿ = −k

∂φ

∂y
− γmvy , z = t .

In Figure 2 one can see the trajectory of a charged particle with charge k = 2 · 10−4 and mass m = 1
in the electric field induced by a charge fixed in the origin with charge −2 · 10−4 and in absence of
gravity. The friction coefficient is γ = 0.3 and the initial configuration of the system is q(0) = (2, 0, 0),
v(0) = (0, 10, 0). As indicated above, the particle is subjected to the restriction z = t.

6. Conclusions and further research

We have generalized the Skinner–Rusk unified formalism for time-dependent contact systems. This
framework allows to skip the second-order problem, since this condition is recovered in the first step of
the constraint algorithm for both regular and singular Lagrangians. This makes this formalism especially
interesting when working with systems described by singular Lagrangians.

The key tool of this formalism is the Pontryagin bundleW = R × TQ × T∗Q × R and its canonical
precocontact structure. Imposing the compatibility of the dynamical equations onW we obtain a set
of constraint function defining a submanifoldW1, which coincides with the graph of the Legendre
map, the second-order conditions and the Herglotz–Euler–Lagrange equations. We have also shown
that the Skinner–Rusk formalism for cocontact systems is equivalent to both the Hamiltonian and the
Lagrangian formalisms (in this last case when imposing the second order condition).

In addition, we have described in full detail three examples in order to illustrate this method: the
Duffing equation, an ascending particle with time-dependent mass and quadratic drag, and a charged
particle in a stationary electric field with a time-dependent constraint.

The formulation introduced in this paper will permit to extend the k-contact formalism for field
theories with damping introduced in [44, 45] to non-autonomous field theories. This new formulation
will permit to describe many field theories, such as damped vibrating membranes with external forces,
Maxwell’s equations with charges and currents, etc.
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