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Dynamical systems with dissipative behaviour can be described in terms of contact manifolds

and a modified version of Hamilton’s equations. Dissipation terms can also be added to field

equations, as showed in a recent paper where we introduced the notion of k-contact structure,

and obtained a modified version of the De Donder–Weyl equations of covariant Hamiltonian field

theory. In this paper we continue this study by presenting a k-contact Lagrangian formulation for

nonconservative field theories. The Lagrangian density is defined on the product of the space of

k-velocities times a k-dimensional Euclidean space with coordinates sα , which are responsible

for the dissipation. We analyze the regularity of such Lagrangians; only in the regular case

we obtain a k-contact Hamiltonian system. We study several types of symmetries for k-contact

Lagrangian systems, and relate them with dissipation laws, which are analogous to conservation

laws of conservative systems. Several examples are discussed: we find contact Lagrangians for

some kinds of second-order linear partial differential equations, with the damped membrane as

a particular example, and we also study a vibrating string with a magnetic-like term.

Keywords: contact structure, field theory, Lagrangian system, dissipation, k-symplectic structure,

k-contact structure.
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1. Introduction

In the last years the methods of differential geometry have been used to
develop an intrinsic framework to describe dissipative or damped systems, in
particular using contact geometry [2, 17, 24]. It has been applied to give both the
Hamiltonian and the Lagrangian descriptions of mechanical systems with dissipation

[347]
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[3, 5, 7–9, 13, 16, 25, 27]. Contact geometry has other physical applications, as for
instance thermodynamics, quantum mechanics, circuit theory, control theory, etc. (see
[4, 8, 20, 24, 28], among others). All of them are described by ordinary differential
equations to which some terms that account for the dissipation or damping have
been added.

These geometric methods have been also used to give intrinsic descriptions of
the Lagrangian and Hamiltonian formalisms of field theory; in particular, those of
multisymplectic and k-symplectic geometry (see, for instance, [6, 12, 14, 18, 29, 31]
and references therein). Nevertheless, all these methods are developed, in general,
to model systems of variational type; that is, without dissipation or damping.

In a recent paper [15] we have introduced a generalization of both contact
geometry and k-symplectic geometry to describe field theories with dissipation, and
more specifically their Hamiltonian (De Donder–Weyl) covariant formulation. This
new formalism is inspired by contact Hamiltonian mechanics, where the addition
of a “contact variable” s allows to describe dissipation terms; geometrically this
new variable comes from a contact form instead of the usual symplectic form of
Hamiltonian mechanics. In the field theory case, if k is the number of independent
variables (usually space-time variables), we add k new dependent variables sα to
introduce dissipation terms in the De Donder–Weyl equations. These new variables
can be obtained geometrically from the notion of k-contact structure: a family of k
differential 1-forms ηα satisfying certain properties. Then a k-contact Hamiltonian
system is a manifold endowed with a k-contact structure and a Hamiltonian function H.
With these elements we can state the k-contact Hamilton equations, which indeed
add dissipation terms to the usual Hamiltonian field equations. The study of their
symmetries also allows to obtain some dissipation laws. This formalism was applied
to two relevant examples: the damped vibrating string and Burgers’ equation.

The aim of this paper is to extend the above study, developing the Lagrangian
formalism of field theories with dissipation, mainly in the regular case. For this
purpose, the aforementioned k-contact structure will be used to generalize the
Lagrangian formalism of the contact mechanics presented in [9, 16] and the
Lagrangian k-symplectic formulation of classical field theories [12, 29]. In this new
formalism the phase bundle is ⊕kTQ × R

k = (TQ⊕ k. . . ⊕TQ) × R
k. Then, given

a Lagrangian function L : ⊕k TQ × R
k → R, one defines k differential 1-forms ηα

L

which, when L is regular, constitute a k-contact structure on the phase bundle. The
k-contact Lagrangian field equations are then defined as the k-contact Hamiltonian
field equations for the Lagrangian energy EL. When written in coordinates they are
the Euler–Lagrange equations for L with some additional terms which account for
dissipation.

We also study several types of symmetries for these Lagrangian field theories,
as well as their associated dissipation laws, which are characteristic of dissipative
systems, and are analogous to the conservation laws for conservative systems.

As examples of this formalism we study the k-contact Lagrangian formulation
for second-order elliptic and hyperbolic partial differential equations, finding contact
Lagrangians for some specific kinds of these equations. This procedure is exemplified
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with the equation of the damped vibrating membrane, which is given a 2-contact
Lagrangian description. In another example we deal with a two-dimensional vibration
of a string illustrating the difference between the linear terms that appear in the
equations arising from magnetic-like terms and those coming from a k-contact
formulation.

The paper is organized as follows. Section 2 is devoted to briefly review several
preliminary concepts on k-symplectic manifolds, k-contact geometry and k-contact
Hamiltonian systems for field theories with dissipation. In Section 3 we introduce
the notion of k-contact Lagrangian system, and set the geometric framework for
the Lagrangian formalism of field theories with dissipation, stating the geometric
form of the contact Euler–Lagrange equations in several equivalent ways, as well
as the Legendre transformation and the associated canonical Hamiltonian formalism.
In Section 4 we study several types of Lagrangian symmetries and the relations
between them, as well as the corresponding dissipation laws. Finally, some examples
are given in Section 5.

Throughout the paper all the manifolds and mappings are assumed to be smooth.
Sum over crossed repeated indices is understood.

2. Preliminaries

2.1. k-tangent bundle, k-vector fields and geometric structures

(See [12, 29] for more details.)
Let Q be a manifold and consider ⊕kTQ = TQ⊕ k. . . ⊕TQ (it is called the

k-tangent bundle, or bundle of k1-velocities, of Q), which is endowed with the
natural projections to each direct summand and to the base manifold,

τα : ⊕k TQ → TQ, τ 1
Q : ⊕k TQ → Q.

A point of ⊕kTQ is wq = (v1q, . . . , vkq) ∈ ⊕kTQ, where (vi)q ∈ TqQ.

A k-vector field on Q is a section X : Q −→ ⊕kTQ of the projection τ 1
Q. It is

specified by giving k vector fields X1, . . . , Xk ∈ X(Q), obtained as Xα = τα ◦ X;
for 1 ≤ α ≤ k, and it is denoted X = (X1, . . . , Xk).

Given a map φ : D ⊂ R
k → Q, the first prolongation of φ to ⊕kTQ is the map

φ′ : D ⊂ R
k → ⊕kTQ defined by

φ′(t) =
�

φ(t), Tφ

�

∂

∂t1

�

�

�

�

t

�

, . . . , Tφ

�

∂

∂tk

�

�

�

�

t

��

≡ (φ(t);φ′
α(t)),

where t = (t1, . . . , tk) are the canonical coordinates of R
k. A map ϕ : D ⊂ R

k →
⊕kTQ is said to be holonomic if it is the first prolongation of a map φ : D ⊂ R

k → Q.
A map φ : D ⊂ R

k → Q is an integral map of a k-vector field X = (X1, . . . , Xk)
when

φ′ = X ◦ φ. (1)

Equivalently, Tφ ◦ ∂

∂tα
= Xα ◦ φ, for every α. A k-vector field X is integrable if

every point of Q is in the image of an integral map of X.
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In coordinates, if Xα = Xi
α

∂

∂xi
, then φ is an integral map of X if, and only

if, it is a solution to the following system of partial differential equations,

∂φi

∂tα
= Xi

α(φ).

A k-vector field X = (X1, . . . , Xk) is integrable if, and only if, [Xα, Xβ] = 0, for
every α, β [26]; these are the necessary and sufficient conditions for the integrability
of the above system of partial differential equations.

As in the case of the tangent bundle, local coordinates (qi) in U ⊂ Q induce
natural coordinates (qi, vi

α) in (τ 1
Q)−1(U) ⊂ ⊕kTQ, with 1 ≤ i ≤ n and 1 ≤ α ≤ k.

Given α and wq ∈ ⊕kTQ, there exists a natural map (3
wq
q )α : TqQ → Twq (⊕kTQ),

called the α-vertical lift from q to wq , defined as

(3
wq
q )α(uq) = d

dλ
(v1q, . . . , vα−1q, vαq + λuq, vα+1q, . . . , vkq)|λ=0

.

In coordinates, if

uq = ai ∂

∂qi

�

�

�

�

q

,

we have

(3
wq
q )α(uq) = ai ∂

∂vi
α

�

�

�

�

wq

.

Observe that these α-vertical lifts are τ 1
Q-vertical vectors. These vertical lifts extend

to vector fields in a natural way; that is, if X ∈ X(Q), then its α-vertical lift,

3α(X) ∈ X(⊕kTQ), is given by (3α(X))wq := (3
wq
q )α(Xq).

The canonical k-tangent structure on ⊕kTQ is the set (J 1, . . . , J k) of tensor
fields of type (1, 1) in ⊕kTQ defined as

J α
wq

:= (3
wq
q )α ◦ Twq τ

1
Q.

In natural coordinates we have

J α = ∂

∂vi
α

⊗ dqi.

The Liouville vector field 1 ∈ X(⊕kTQ) is the infinitesimal generator of the flow
ψ : R× ⊕kTQ −→ ⊕kTQ, given by ψ(t; v1q, . . . , vkq) = (etv1q, . . . , e

tvkq). Observe

that 1 = 11 + . . . + 1k, where each 1α ∈ X(⊕kTQ) is the infinitesimal generator
of the flow ψα : R × ⊕kTQ −→ ⊕kTQ,

ψα(s; v1q, . . . , vkq) = (v1q, . . . , v(α−1)q, e
tvαq, v(α+1)q, . . . , vkq).

In coordinates, 1 = vi
α

∂

∂vi
α

.
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Given a map 8 : M → N , there exists a natural extension ⊕kT8 : ⊕k TM →
⊕kTN , defined by

⊕kT8(v1q, . . . , vkq) := (Tq8(v1q), . . . , Tq8(vkq)).

By definition, a k-vector field Ŵ = (Ŵ1, . . . ,Ŵk) in ⊕kTQ is a section of the
projection

τ 1

⊕kTQ
: T(⊕kTQ)⊕ k. . . ⊕T(⊕kTQ) → ⊕kTQ.

Then, we say that Ŵ is a second-order partial differential equation (SOPDE) if it
is also a section of the projection

⊕kTτ 1
Q : T(⊕kTQ)⊕ k. . . ⊕T(⊕kTQ) → ⊕kTQ;

that is, ⊕kTτ 1
Q ◦ Ŵ = Id⊕kTQ = τ 1

⊕kTQ
◦ Ŵ. Notice that a k-vector field Ŵ in ⊕kTQ

is a SOPDE if, and only if, J α(Ŵα) = 1.

In addition, an integrable k-vector field Ŵ = (Ŵ1, . . . ,Ŵk) in ⊕kTQ is a SOPDE

if, and only if, its integrable maps are holonomic.

In natural coordinates, the expression of the components of a SOPDE is Ŵα =
vi

α

∂

∂qi
+ Ŵi

αβ

∂

∂vi
β

. Then, if ψ : Rk → ⊕kTQ, locally given by ψ(t) = (ψ i (t), ψ i
β(t)),

is an integral map of an integrable SOPDE, from (1) we have that

∂ψ i

∂tα

�

�

�

�

t

= ψ i
α(t),

∂ψ i
β

∂tα

�

�

�

�

t

= Ŵi
αβ(ψ(t)) .

Furthermore, ψ = φ′, where φ′ is the first prolongation of the map φ = τ ◦ψ : Rk ψ→
⊕kTQ

τ→ Q, and hence φ is a solution to the system of second-order partial
differential equations

∂2φi

∂tα∂tβ
(t) = Ŵi

αβ

�

φi (t),
∂φi

∂tγ
(t)

�

. (2)

Observe that, from (2) we obtain that, if Ŵ is an integrable SOPDE, then Ŵi
αβ = Ŵi

βα.

2.2. k-symplectic manifolds

(See [1, 10–12, 29] for more details).

Let M be a manifold of dimension N = n + kn. A k-symplectic structure on M

is a family (ω1, . . . ,ωk; V ), where ωα (α = 1, . . . , k) are closed 2-forms, and V is
an integrable nk-dimensional tangent distribution on M such that

(i) ωα|V ×V = 0 (for every α) , (ii)

k
\

α=1

ker ωα = {0} .

Then (M, ωα, V ) is called a k-symplectic manifold.
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For every point of M there exist a neighbourhood U and local coordinates
(qi, pα

i ) (1 ≤ i ≤ n, 1 ≤ α ≤ k) such that, on U ,

ωα = dqi ∧ dpα
i , V =

�

∂

∂p1
i

, . . . ,
∂

∂pk
i

�

.

These are the so-called Darboux or canonical coordinates of the k-symplectic
manifold [1].

The canonical model for k-symplectic manifolds is ⊕kT∗Q = T∗Q⊕ k. . . ⊕T∗Q,
with natural projections

πα : ⊕k T∗Q → T∗Q , π1
Q : ⊕k T∗Q → Q .

As in the case of the cotangent bundle, local coordinates (qi) in U ⊂ Q induce
natural coordinates (qi, pα

i ) in (π1
Q)−1(U). If θ and ω = −dθ are the canonical

forms of T∗Q, then ⊕kT∗Q is endowed with the canonical forms

θα = (πα)∗θ, ωα = (πα)∗ω = −(πα)∗dθ = −dθα, (3)

and in natural coordinates we have that θα = pα
i dqi and ωα = dqi ∧ dpα

i . Thus,

the triple (⊕kT∗Q, ωα, V ), where V = ker Tπ1
Q, is a k-symplectic manifold, and the

natural coordinates in ⊕kT∗Q are Darboux coordinates.

2.3. k-contact structures

The definition of k-contact structure has been recently introduced in [15], where
the reader can find more details.

Remember that, if M is a smooth manifold of dimension m, a (generalized)
distribution on M is a subset D ⊂ TM such that, for every x ∈ M , Dx ⊂ TxM is
a vector subspace. The distribution D is smooth when it can be locally spanned by
a family of smooth vector fields, and is regular when it is smooth and has locally
constant rank. A codistribution on M is a subset C ⊂ T∗M with similar properties.
The annihilator D◦ of a distribution D is a codistribution.

A (smooth) differential 1-form η ∈ �1(M) generates a smooth codistribution that
we denote by hηi ⊂ T∗M; it has rank 1 at every point where η does not vanish.
Its annihilator is a distribution hηi◦ ⊂ TM; it can be described also as the kernel
of the vector bundle morphism bη : TM → M × R defined by η. This distribution
has corank 1 at every point where η does not vanish.

Now, given k differential 1-forms η1, . . . , ηk ∈ �1(M), let:

C
C = hη1, . . . , ηki ⊂ T∗M,

D
C =

�

C
C
�◦ = ker bη1 ∩ . . . ∩ ker bηk ⊂ TM,

D
R = ker ddη1 ∩ . . . ∩ ker ddηk ⊂ TM,

C
R =

�

D
R
�◦ ⊂ T∗M.

DEFINITION 1. A k-contact structure on M is a family of k differential 1-forms
ηα ∈ �1(M) such that, with the preceding notations,
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(i) DC ⊂ TM is a regular distribution of corank k; or, what is equivalent,
η1 ∧ . . . ∧ ηk 6= 0, at every point.

(ii) DR ⊂ TM is a regular distribution of rank k.

(iii) DC ∩ DR = {0} or, what is equivalent,

k
\

α=1

�

ker bηα ∩ ker ddηα
�

= {0}.

We call CC the contact codistribution; DC the contact distribution; DR the Reeb
distribution; and CR the Reeb codistribution.
A k-contact manifold is a manifold endowed with a k-contact structure.

REMARK 1. If conditions (i) and (ii) hold, then (iii) is equivalent to

(iii′) TM = DC ⊕ DR.

For k = 1 we recover the definition of contact structure.

THEOREM 1. Let (M, ηα) be a k-contact manifold.

1. The Reeb distribution DR is involutive, and therefore integrable.
2. There exist k vector fields Rα ∈ X(M), the Reeb vector fields, uniquely

defined by the relations

i(Rβ)ηα = δα
β, i(Rβ)dηα = 0. (4)

3. The Reeb vector fields commute, [Rα,Rβ] = 0, and they generate DR.

There are coordinates (xI ; sα) such that

Rα = ∂

∂sα
, ηα = dsα − f α

I (x) dxI ,

where f α
I (x) are functions depending only on the xI ; we call them adapted

coordinates (to the k-contact structure).

EXAMPLE 1. Given k ≥ 1, the manifold (⊕kT∗Q)×R
k has a canonical k-contact

structure defined by the 1-forms

ηα = dsα − θα,

where sα is the α-th Cartesian coordinate of R
k, and θα is the pull-back of the

canonical 1-form of T∗Q with respect to the projection (⊕kT∗Q) × R
k → T∗Q

to the α-th direct summand. Using coordinates qi on Q and natural coordinates
(qi, pα

i ) on each T∗Q, their local expressions are

ηα = dsα − pα
i dqi,

from which dηα = dqi ∧ dpα
i , and the Reeb vector fields are

Rα = ∂

∂sα
.



354 J. GASET, X. GRÀCIA, M. C. MUÑOZ-LECANDA, X. RIVAS and N. ROMÁN-ROY

The following result ensures the existence of canonical coordinates for a particular
kind of k-contact manifolds.

THEOREM 2 (k-contact Darboux theorem). Let (M, ηα) be a k-contact manifold
of dimension n+kn+k such that there exists an integrable subdistribution V of DC

with rankV = nk. Around every point of M , there exists a local chart of coordinates
(U ; qi, pα

i , sα), 1 ≤ α ≤ k, 1 ≤ i ≤ n, such that

ηα|U = dsα − pα
i dqi .

In these coordinates,

D
R|U =

�

Rα = ∂

∂sα

�

, V|U =
�

∂

∂pα
i

�

.

These are the so-called canonical or Darboux coordinates of the k-contact manifold.

This theorem allows us to consider the manifold presented in Example 1 as the
canonical model for these kinds of k-contact manifolds.

2.4. k-contact Hamiltonian systems

Together with k-contact structures, k-contact Hamiltonian systems have also been
defined in [15].

A k-contact Hamiltonian system is a family (M, ηα,H), where (M, ηα) is a
k-contact manifold, and H ∈ C ∞(M) is called a Hamiltonian function. The k-contact
Hamilton–de Donder–Weyl equations for a map ψ : D ⊂ R

k → M are
(

i(ψ ′
α)dηα =

�

dH − (LRαH)ηα
�

◦ ψ,

i(ψ ′
α)ηα = −H ◦ ψ.

(5)

The k-contact Hamilton–de Donder–Weyl equations for a k-vector field X =
(X1, . . . , Xk) in M are

(

i(Xα)dηα = dH − (LRαH)ηα,

i(Xα)ηα = −H.
(6)

Their solutions are called Hamiltonian k-vector fields. These equations are equivalent
to

(

LXαηα = −(LRαH)ηα,

i(Xα)ηα = −H.
(7)

Solutions to these equations always exist, although they are neither unique, nor
necessarily integrable.

If X is an integrable k-vector field in M , then every integral map ψ : D ⊂ R
k → M

of X satisfies the k-contact equation (5) if, and only if, X is a solution to (6).
Notice, however, that equations (5) and (6) are not, in general, fully equivalent,
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since a solution to (5) may not be an integral map of some integrable k-vector
field in M solution to (6).

An alternative, partially equivalent, expression for the Hamilton–De Donder–
Weyl equations, which does not use the Reeb vector fields Rα, can be given
as follows. Consider the 2-forms �α = −H dηα + dH ∧ ηα. On the open set
O = {p ∈ M | H(p) 6= 0}, if a k-vector field X = (Xα) satisfies

(

i(Xα)�α = 0,

i(Xα)ηα = −H,
(8)

then X is a solution of the Hamilton–De Donder–Weyl equations (6)). Any integral
map ψ of such a k-vector field is a solution to

(

i(ψ ′
α)�α = 0 ,

i(ψ ′
α)ηα = −H ◦ ψ .

(9)

REMARK 2. If the family (M, ηα) does not hold some of the conditions of
Definition 1, then (M, ηα) is called a k-precontact manifold and (M, ηα,H) is said
to be a k-precontact Hamiltonian system. In this case, the Reeb vector fields are not
uniquely defined. However, as it happens in other similar situations (precosymplectic
mechanics, k-precosymplectic field theories or precontact mechanics) [9, 23], it could
be proved that Eqs. (5) and (6) do not depend on the used Reeb vector fields and,
thus, the equations are still valid.

In canonical coordinates, if ψ(t) = (qi(t), pα
i (t), sα(t)), then its first prolongation

has components

ψ ′
β =

�

qi, pα
i , sα,

∂qi

∂tβ
,
∂pα

i

∂tβ
,
∂sα

∂tβ

�

,

and the k-contact Hamilton–de Donder–Weyl equations read










































∂qi

∂tα
= ∂H

∂pα
i

◦ ψ,

∂pα
i

∂tα
= −

�

∂H

∂qi
+ pα

i

∂H

∂sα

�

◦ ψ,

∂sα

∂tα
=

�

pα
i

∂H

∂pα
i

− H

�

◦ ψ.

(10)

If X = (Xα) is a k-vector field solution to (8) and in canonical coordinates we
have that

Xα = Xβ
α

∂

∂sβ
+ Xi

α

∂

∂qi
+ X

β

αi

∂

∂p
β

i

,
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then






































Xi
α = ∂H

∂pα
i

,

Xα
αi = −

�

∂H

∂qi
+ pα

i

∂H

∂sα

�

,

Xα
α = pα

i

∂H

∂pα
i

− H,

(11)

3. k-contact Lagrangian field theory

3.1. k-contact Lagrangian systems

Using the geometric framework introduced in Section 2.1, we are ready to deal
with Lagrangian systems with dissipation in field theories. First we need to enlarge
the bundle in order to include the dissipation variables. Then, consider the bundle
⊕kTQ × R

k with canonical projections

τ̄1 : ⊕k TQ × R
k → ⊕kTQ, τ̄ k : ⊕k TQ × R

k → TQ, sα : ⊕k TQ × R
k → R.

Natural coordinates in ⊕kTQ × R
k are (qi, vi

α, sα).
As ⊕kTQ × R

k → ⊕kTQ is a trivial bundle, the canonical structures in ⊕kTQ
(the canonical k-tangent structure and the Liouville vector field described above)
can be extended to ⊕kTQ × R

k in a natural way, and are denoted with the same
notation (J α) and 1. Then, using these structures, we can extend also the concept
of SOPDE k-vector fields to ⊕kTQ × R

k as follows.

DEFINITION 2. A k-vector field Ŵ = (Ŵα) in ⊕kTQ × R
k is a second-order

partial differential equation (SOPDE) if J α(Ŵα) = 1.

The local expression of a SOPDE is

Ŵα = vi
α

∂

∂qi
+ Ŵi

αβ

∂

∂vi
β

+ gβ
α

∂

∂sβ
. (12)

DEFINITION 3. Let ψ : Rk → Q×R
k be a section of the projection Q×R

k → R
k;

with ψ = (φ, sα), where φ : Rk → Q. The first prolongation of ψ to ⊕kTQ × R
k

is the map σ : Rk → ⊕kTQ × R
k given by σ = (φ′, sα). The map σ is said to be

holonomic.

The following property is a straightforward consequence of the above definitions
and the results about SOPDE in the bundle ⊕kTQ given in Section 2.1:

PROPOSITION 1. A k-vector field Ŵ in ⊕kTQ ×R
k is a SOPDE if, and only if,

its integral maps are holonomic.

Now we can state the Lagrangian formalism of field theories with dissipation.
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DEFINITION 4. A Lagrangian function is a function L ∈ C ∞(⊕kTQ × R
k).

The Lagrangian energy associated with L is the function defined by EL :=
1(L) − L ∈ C ∞(⊕kTQ × R

k).
The Cartan forms associated with L are

θα
L

= t (J α) ◦ dL ∈ �1(⊕kTQ × R
k), ωα

L
= −dθα

L
∈ �2(⊕kTQ × R

k).

Finally, we can define the forms

ηα
L

= dsα − θα
L

∈ �1(⊕kTQ × R
k), dηα

L
= ωα

L
∈ �2(⊕kTQ × R

k).

The couple (⊕kTQ × R
k,L) is said to be a k-contact Lagrangian system.

In natural coordinates (qi, vi
α, sα) of ⊕kTQ ×R

k, the local expressions of these
elements are

EL = vi
α

∂L

∂vi
α

− L, ηα
L

= dsα − ∂L

∂vi
α

dqi.

Before introducing the Legendre map, remember that, given a bundle map
f : E → F between two vector bundles over a manifold B, the fibre derivative
of f is the map Ff : E → Hom(EL, F ) ≈ F ⊗ E∗ obtained by restricting f to
the fibres, fb : Eb → Fb, and computing the usual derivative of a map between two
vector spaces: Ff (eb) = Dfb(eb). This applies in particular when the second vector
bundle is trivial of rank 1, that is, for a function f : E → R; then Ff : E → E∗.
This map also has a fibre derivative F2f : E → E∗ ⊗E∗, which is usually called the
fibre Hessian of f . For every eb ∈ E, F2f (eb) can be considered as a symmetric
bilinear form on Eb. It is easy to check that Ff is a local diffeomorphism at
a point e ∈ E if, and only if, the Hessian F2f (e) is nondegenerate (see [21] for
details).

DEFINITION 5. The Legendre map associated with a Lagrangian L ∈
C ∞(⊕kTQ×R

k) is the fibre derivative of L, considered as a function on the vector
bundle ⊕kTQ ×R

k → Q ×R
k; that is, the map FL : ⊕k TQ ×R

k → ⊕kT∗Q ×R
k

given by

FL(v1q, . . . , vkq; sα) =
�

FL(·, sα)(v1q, . . . , vkq), s
α
�

; (v1q, . . . , vkq) ∈ ⊕kTQ,

where L(·, sα) denotes the Lagrangian with sα freezed.

This map is locally given by FL(qi, vi
α, sα) =

�

qi,
∂L

∂vi
α

, sα
�

.

REMARK 3. The Cartan forms can also be defined as

θα
L

= FL
∗θα, ωα

L
= FL

∗ωα ,

where θα and ωα are given in (3).
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PROPOSITION 2. For a Lagrangian function L the following conditions are
equivalent:

1. The Legendre map FL is a local diffeomorphism.
2. The fibre Hessian F2L : ⊕k TQ × R

k −→ (⊕kT∗Q × R
k) ⊗ (⊕kT∗Q × R

k)
of L is everywhere nondegenerate. (The tensor product is of vector bundles
over Q × R

k.)
3. (⊕kTQ × R

k, ηα
L
) is a k-contact manifold.

Proof: The proof can be easily done using natural coordinates, bearing in mind
that

FL(qi, vi
α, sα) =

�

qi,
∂L

∂vi
α

, sα

�

,

F
2
L(qi, vi

α, sα) = (qi, W
αβ

ij , sα), with W
αβ

ij =
�

∂2L

∂vi
α∂v

j

β

�

.

Then the conditions in the proposition mean that the matrix W = (W
αβ

ij ) is everywhere

nonsingular. �

DEFINITION 6. A Lagrangian function L is said to be regular if the equivalent
conditions in Proposition 2 hold. Otherwise L is called a singular Lagrangian. In
particular, L is said to be hyperregular if FL is a global diffeomorphism.

Given a regular k-contact Lagrangian system (⊕kTQ×R
k,L), from (4) we have

that the Reeb vector fields (RL)α ∈ X(⊕kTQ × R
k) for this system are the unique

solution to
i((RL)α)dη

β

L
= 0, i((RL)α)η

β

L
= δβ

α .

If L is regular, there exists the inverse W
ij

αβ of the Hessian matrix, namely

W
ij

αβ

∂2L

∂v
j

β∂vk
γ

= δi
kδ

γ
α , and then a simple calculation in coordinates leads to

(RL)α = ∂

∂sα
− W

ji

γβ

∂2L

∂sα∂v
j
γ

∂

∂vi
β

.

3.2. The k-contact Euler–Lagrange equations

As a result of the preceding definitions and results, every regular k-contact La-
grangian system has associated the k-contact Hamiltonian system (⊕kTQ×R, ηα

L
, EL).

DEFINITION 7. Let (⊕kTQ × R
k,L) be a k-contact Lagrangian system.

The k-contact Euler–Lagrange equations for a holonomic maps σ : Rk → ⊕kTQ×R
k

are (

i(σ ′
α)dηα

L
=

�

dEL − (L(RL)αEL)ηα
L

�

◦ σ ,

i(σ ′
α)ηα

L
= −EL ◦ σ .

(13)
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The k-contact Lagrangian equations for a k-vector field XL = ((XL)α) in ⊕kTQ×R
k

are (

i((XL)α)dηα
L

= dEL − (L(RL)αEL)ηα
L
,

i((XL)α)ηα
L

= −EL.
(14)

A k-vector field which is solution to these equations is called a Lagrangian k-vector
field.

A first relevant result is as follows.

PROPOSITION 3. Let (⊕kTQ×R
k,L) be a k-contact regular Lagrangian system.

Then, the k-contact Euler–Lagrange equations (14) admit solutions. They are not
unique if k > 1.

Proof: The proof is the same as that of Proposition 4.3 in [15]. �

In a natural chart of coordinates of ⊕kTQ × R
k, Eqs. (13) read

∂

∂tα

�

∂L

∂vi
α

◦ σ

�

=
�

∂L

∂qi
+ ∂L

∂sα

∂L

∂vi
α

�

◦ σ ,
∂sα

∂tα
= L ◦ σ , (15)

meanwhile, for a k-vector field XL = ((XL)α) with (XL)α = (XL)iα
∂

∂qi
+(XL)iαβ

∂

∂vi
β

+

(XL)βα
∂

∂sβ
, the Lagrangian equations (14) are

0 =
�

(XL)jα − vj
α

� ∂2L

∂v
j
α∂sβ

, (16)

0 =
�

(XL)jα − vj
α

� ∂2L

∂vi
β∂v

j
α

, (17)

0 =
�

(XL)jα − vj
α

� ∂2L

∂qi∂v
j
α

+ ∂L

∂qi
− ∂2L

∂sβ∂vi
α

(XL)βα

− ∂2L

∂qj∂vi
α

(XL)jα − ∂2L

∂v
j

β∂vi
α

(XL)
j

αβ + ∂L

∂sα

∂L

∂vi
α

, (18)

0 =L + ∂L

∂vi
α

�

(XL)iα − vi
α

�

− (XL)αα. (19)

If L is a regular Lagrangian, equations (17) lead to vi
α = (XL)iα, which are the

SOPDE condition for the k-vector field X. Then, (16) holds identically, and (19)
and (18) give

(XL)αα =L,

− ∂L

∂qi
+ ∂2L

∂sβ∂vi
α

(XL)βα + ∂2L

∂qj∂vi
α

vj
α + ∂2L

∂v
j

β∂vi
α

(XL)
j

αβ = ∂L

∂sα

∂L

∂vi
α

.
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Notice that, if this SOPDE XL is integrable, these last equations are the Euler–
Lagrange equations (15) for its integral maps. In this way, we have proved the
following result.

PROPOSITION 4. If L is a regular Lagrangian, then the corresponding Lagrangian
k-vector fields XL (solutions to the k-contact Lagrangian equations (14)) are SOPDE’s
and if, in addition, XL is integrable, then its integral maps are solutions to the
k-contact Euler–Lagrange field equations (13).

This SOPDE XL ≡ ŴL is called the Euler–Lagrange k-vector field associated
with the Lagrangian function L.

REMARK 4. It is interesting to point out how, in the Lagrangian formalism of
dissipative field theories, the second equation in (15) relates the variation of the
“dissipation coordinates” sα to the Lagrangian function.

REMARK 5. If L is not regular then (⊕kTQ×R
k, ηα

L
, EL) is a k-precontact system

and, in general, Eqs. (13) and (14) have no solutions everywhere in ⊕kTQ×R
k but,

in the most favourable situations, they do in a submanifold of ⊕kTQ × R
k which

is obtained by applying a suitable constraint algorithm. Nevertheless, solutions to
Eqs. (14) are not necessarily SOPDE (unless it is required as the additional condition
J α(Xα) = 1) and, as a consequence, if they are integrable, their integral maps are
not necessarily holonomic.

REMARK 6. Observe that the particular case k = 1 gives the Lagrangian formalism
for mechanical systems with dissipation [9, 16].

3.3. k-contact canonical Hamiltonian formalism

In the regular or the hyper-regular cases we have that FL is a (local) diffeo-
morphism between (⊕kTQ × R

k, ηα
L
) and (⊕kT∗Q × R

k, ηα), where FL
∗ηα = ηα

L
.

Furthermore, there exists (maybe locally) a function H ∈ C ∞(⊕kT∗Q×R) such that
H = EL◦FL−1; then we have the k-contact Hamiltonian system (⊕kT∗Q×R

k, ηα,H),
for which FL∗(RL)α = Rα. Therefore, if ŴL is an Euler–Lagrange k-vector field
associated with L in ⊕kTQ × R

k, then FL∗ŴL = XH is a contact Hamiltonian
k-vector field associated with H in ⊕kT∗Q × R

k, and conversely.
For singular Lagrangians, following [19] we define such an object.

DEFINITION 8. A singular Lagrangian L is almost-regular if:

1. P := FL(⊕kTQ × R
k) is a closed submanifold of ⊕kT∗Q × R

k.
2. FL is a submersion onto its image.
3. The fibres FL−1(p), for every p ∈ P , are connected submanifolds of

⊕kTQ × R
k.

If L is almost-regular and 0 : P →֒ ⊕kT∗Q × R
k is the natural embedding,

denoting by FL0 : ⊕k TQ×R
k → P the restriction of FL given by 0 ◦FL0 = FL;
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then there exists H0 ∈ C ∞(P) such that (FL0)
∗H0 = EL. Furthermore, we can

define ηα
0 =  ∗

0 ηα, and then, the triple (P, ηα
0 ,H0) is the k-precontact Hamiltonian

system associated with L, and the corresponding Hamiltonian fields equations are
(8) or (9) (in P). In general, these equations have no solutions everywhere in P

but, in the most favourable situations, they do in a submanifold Pf →֒ P , which is
obtained applying a suitable constraint algorithm, and where there are Hamiltonian
k-vector fields in P , tangent to Pf .

4. Symmetries and dissipated quantities in the Lagrangian formalism

As in [15], we introduce different concepts of symmetry of the system, depending
on which structure is preserved, putting the emphasis on the transformations that leave
the geometric structures invariant, or on the transformations that preserve the solutions
of the system (see, for instance [22, 32]). In this way, the following definitions and
properties are adapted from those stated for generic k-contact Hamiltonian systems
to the case of a k-contact regular Lagrangian system (⊕kTQ × R

k,L); that is, for
the system (⊕kTQ×R

k, ηα
L
, EL). The proofs of the results for the general case are

given in [15].

4.1. Symmetries

DEFINITION 9. Let (⊕kTQ × R
k,L) be a k-contact regular Lagrangian system.

• A Lagrangian dynamical symmetry is a diffeomorphism 8 : ⊕k TQ × R
k →

⊕kTQ × R
k such that, for every solution σ to the k-contact Euler–Lagrange

equations (13), 8 ◦ σ is also a solution.
• An infinitesimal Lagrangian dynamical symmetry is a vector field Y ∈

X(⊕kTQ × R
k) whose local flow is made of local symmetries.

The following results give characterizations of symmetries in terms of k-vector
fields.

LEMMA 1. Let 8 : ⊕k TQ × R
k → ⊕kTQ × R

k be a diffeomorphism and
X = (X1, . . . , Xk) a k-vector field in ⊕kTQ × R

k. If ψ is an integral map of X,
then 8 ◦ ψ is an integral map of 8∗X = (8∗Xα). In particular, if X is integrable
then 8∗X is also integrable.

PROPOSITION 5. If 8 : ⊕k TQ × R
k → ⊕kTQ × R

k is a Lagrangian dynamical
symmetry then, for every integrable k-vector field X solution to the k-contact
Lagrangian equations (14), 8∗X is another solution.

On the other side, if 8 transforms every k-vector field XL solution to the
k-contact Lagrangian equations (14) into another solution, then for every integral
map ψ of XL, we have that 8 ◦ ψ is a solution to the k-contact Euler–Lagrange
equations (13).

Among the most relevant symmetries are those that leave the geometric structures
invariant.
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DEFINITION 10. A Lagrangian k-contact symmetry is a diffeomorphism 8 : ⊕k

TQ × R
k → ⊕kTQ × R

k such that

8∗ηα
L

= ηα
L
, 8∗EL = EL.

An infinitesimal Lagrangian k-contact symmetry is a vector field Y ∈ X(⊕kTQ×R
k)

whose local flow is a Lagrangian k-contact symmetry; that is,

L (Y )ηα
L

= 0, L (Y )EL = 0.

PROPOSITION 6. Every (infinitesimal) Lagrangian k-contact symmetry preserves
the Reeb vector fields, that is 8∗(RL)α = (RL)α (or [Y, (RL)α] = 0).

And, as a consequence of these results, we obtain the relation between these
kinds of symmetries.

PROPOSITION 7. (Infinitesimal) Lagrangian k-contact symmetries are (infinitesi-
mal) Lagrangian dynamical symmetries.

4.2. Dissipation laws

DEFINITION 11. A map F : M → R
k, F = (F 1, . . . , F k), is said to satisfy:

1. The dissipation law for maps if, for every map σ solution to the k-contact
Euler–Lagrange equations (13), the divergence of F ◦σ = (F α ◦σ ) : Rk → R

k,
which is defined as usual by div(F ◦ σ ) = ∂(F α◦ σ )/∂tα, satisfies that

div(F ◦ σ ) = −
�

(L(RL)αEL)F α
�

◦ σ . (20)

2. The dissipation law for k-vector fields if, for every k-vector field XL solution
to the k-contact Lagrangian equations (14), the following equation holds.

L(XL)αF α = −(L(RL)αEL)F α. (21)

Both concepts are partially related by the following property.

PROPOSITION 8. If F = (F α) satisfies the dissipation law for maps then, for
every integrable k-vector field XL = ((XL)α) which is a solution to the k-contact
Lagrangian equations (14), we have that Eq. (21) holds for XL.

On the other side, if (21) holds for a k-vector field X, then (20) holds for
every integral map ψ of X.

PROPOSITION 9. If Y is an infinitesimal dynamical symmetry then, for every
solution XL = ((XL)α) to the k-contact Lagrangian equations (14), we have that

i([Y, (XL)α])ηα
L

= 0, i([Y, (XL)α])dηα
L

= 0.

Finally, we have the following fundamental result which associates dissipated
quantities with symmetries.

THEOREM 3. (Dissipation theorem). If Y is an infinitesimal dynamical symmetry,
then F α = −i(Y )ηα

L
satisfies the dissipation law for k-vector fields (21).
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4.3. Symmetries of the Lagrangian function

Consider a k-contact regular Lagrangian system (⊕kTQ × R
k,L).

First, remember that, if ϕ : Q → Q is a diffeomorphism, we can construct the
diffeomorphism 8 := (Tkϕ, Id

Rk) : ⊕kTQ×R
k −→ ⊕kTQ×R

k, where Tkϕ : ⊕kTQ →
⊕kTQ denotes the canonical lifting of ϕ to ⊕kTQ. Then 8 is said to be the
canonical lifting of ϕ to ⊕kTQ × R

k. Any transformation 8 of this kind is called
a natural transformation of ⊕kTQ × R

k.

Moreover, given a vector field Z ∈ X(Q) we can define its complete lifting to
⊕kTQ×R

k as the vector field Y ∈ X(⊕kTQ×R
k) whose local flow is the canonical

lifting of the local flow of Z to ⊕kTQ × R
k; that is, the vector field Y = ZC ,

where ZC denotes the complete lifting of Z to ⊕kTQ, identified in a natural way
as a vector field in ⊕kTQ ×R

k. Any infinitesimal transformation Y of this kind is
called a natural infinitesimal transformation of ⊕kTQ × R

k.

It is well known that the canonical k-tangent structure (J α) and the Liouville
vector field 1 in ⊕kTQ are invariant under the action of canonical liftings of
diffeomorphisms and vector fields from Q to ⊕kTQ. Then, taking into account the
definitions of the canonical k-tangent structure (J α) and the Liouville vector field
1 in ⊗kTQ ⊗ R

k, it can be proved that canonical liftings of diffeomorphisms and
vector fields from Q to ⊗kTQ ⊗ R

k preserve these canonical structures as well as
the Reeb vector fields (RL)α.

Therefore, as an immediate consequence, we obtain a relationship between
Lagrangian-preserving natural transformations and contact symmetries.

PROPOSITION 10. If 8 ∈ Diff(⊗kTQ ⊗ R
k) (resp. Y ∈ X(⊗kTQ ⊗ R

k)) is a

canonical lifting to ⊗kTQ ⊗R
k of a diffeomorphism ϕ ∈ Diff(Q) (resp. of a vector

field Z ∈ X(Q)) that leaves the Lagrangian L invariant, then it is an (infinitesimal)

contact symmetry, i.e.

8∗ηα
L

= ηα
L

, 8∗EL = EL (resp. LY ηα
L

= 0 , LY EL = 0 ) .

As a consequence, it is an (infinitesimal) Lagrangian dynamical symmetry.

As an immediate consequence we have the following momentum dissipation

theorem.

PROPOSITION 11. If
∂L

∂qi
= 0, then

∂

∂qi
is an infinitesimal contact symmetry

and its associated dissipation law is given by the “momenta”

�

∂L

∂vi
α

�

; that is, for

every k-vector field XL = ((XL)α) solution to the k-contact Lagrangian equations

(14), then

L(XL)α

�

∂L

∂vi
α

�

= −(L(RL)αEL)
∂L

∂vi
α

= ∂L

∂sα

∂L

∂vi
α

.
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5. Examples

5.1. An inverse problem for a class of elliptic and hyperbolic equations

A generic second-order linear PDE in R
2 is

Auxx + 2Buxy + Cuyy + Dux + Euy + Fu + G = 0 ,

where A, B,C, D, E, F, G are functions of (x, y), with A > 0. If B2 −AC > 0, the
equation is said to be hyperbolic, if B2 − AC < 0, is elliptic, and if B2 − AC = 0,
is parabolic. In R

n we consider the equation

Aαβuαβ + Dαuα + G(u) = 0 , (22)

where 1 ≤ α, β ≤ n; and now we consider the following case: Aαβ is constant and
invertible (not parabolic), Dα is constant and G is an arbitrary function in u.

In order to find a Lagrangian k-contact formulation of this kind of PDE’s,
consider ⊕nTR × R

n, with coordinates (u, uα, sα) and a generic Lagrangian of the
form

L = 1

2
aαβ(u)uαuβ + b(u)uαsα + d(u, s) .

The associated k-contact structure is given by

ηα = dsα − ∂L

∂uα

du = dsα − (aαβuβ + bsα + cα)du .

The k-contact Euler–Lagrange equations associated to L are

aαβuαβ +
�

1

2

∂aαβ

∂u
− 1

2
baαβ

�

uαuβ − ∂d

∂sβ
aβαuα +

�

− ∂d

∂sα
bsα + bd − ∂d

∂u

�

= 0 . (23)

If this equation has to match (22) then

aαβ = Aαβ, b = 0, d = −(a−1)αβDβsα − g,

where a = (aαβ) and
∂g

∂u
= G.

Damped vibrating membrane As a particular example consider the damped
vibrating membrane, which is described by the PDE

utt − µ2(uxx + uyy) + γut = 0 ;
then

Aαβ =





1 0 0

0 −µ2 0

0 0 −µ2



 , Dα =





γ
0
0



 , G = 0,

and therefore

aαβ =





1 0 0

0 −µ2 0

0 0 −µ2



 , b = 0, d = −γ st .
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Then, a Lagrangian that leads to this equation is

L = 1

2
u2

t − µ2

2
(u2

x + u2
y) − γ st ,

for which

ηt = dst − utdu, ηx = dsx + µ2uxdu, ηy = dsy + µ2uydu.

In this case, we have the contact symmetry
∂

∂u
and the associated map F =

(F t , F x, F y) that satisfies the dissipation law for 3-vector fields is

F t = −i(Y )ηt = ut , F x = −i(Y )ηx = −µ2ux, F y = −i(Y )ηy = −µ2uy.

5.2. A vibrating string: Lorentz-like forces versus dissipation forces

Terms linear in velocities can be found in Euler–Lagrange equations of symplectic
systems. However, they have a specific form, arising from the coefficients of a closed
2-form in the configuration space. The canonical example is the force of a magnetic
field acting on a moving charged particle; such forces do not dissipate energy.
By contrast, other forces linear in the velocities do dissipate energy; for instance,
damping forces. To illustrate the difference between the equations arising from
magnetic-like terms in the Lagrangian and the equations given by the k-contact
formulation of a linear dissipation, we analyze the following academic example.

Consider an infinite string aligned with the z-axis, each of whose points can
vibrate in a horizontal plane. So, the independent variables are (t, z) ∈ R

2, and
the phase space is the bundle manifold ⊕2TR2 with coordinates (x, y, xt , xz, yt , yz).
Let us imagine that the string is nonconducting, but charged with linear density
charge λ. Then, inspired by the Lagrangian formulation of the Lorentz force, we
set the Lagrangian

Lo = 1

2
ρ(x2

t + y2
t ) − 1

2
τ (x2

z + y2
z ) − λ (φ − A1xt − A2yt )

depending on some fixed functions A1(x, y), A2(x, y) and φ(x, y). The resulting
Euler–Lagrange equations are

ρxtt − τxzz = −λ

�

∂A2

∂x
− ∂A1

∂y

�

yt + λ
∂φ

∂x
,

ρytt − τyzz = λ

�

∂A2

∂x
− ∂A1

∂y

�

xt + λ
∂φ

∂y
.

(24)

The left-hand side is the string equation with two modes of vibration in the plane
XY and in the right-hand side we have an electromagnetic-like term.

Now, consider the 2-contact phase space ⊕2TR
2 × R

2, with cartesian coordi-
nates (x, y, xt , xz, yt , yz, s

t , sz). We add a simple dissipation term to the preceding
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Lagrangian,

L = Lo + γ st = 1

2
ρ(x2

t + y2
t ) − 1

2
τ (x2

z + y2
z ) − λ (φ − A1xt − A2yt ) + γ st .

The induced 2-contact structure is

ηt = dst − (ρxt + λA1) dx − (ρyt + λA2) dy ; ηz = dsz + τxz dx + τyz dy.

The 2-contact Euler–Lagrange equations are

ρxtt − τxzz = −λ

�

∂A2

∂x
− ∂A1

∂y

�

yt + λ
∂φ

∂x
+ γρxt + γ λA1 ,

ρytt − τyzz = λ

�

∂A2

∂x
− ∂A1

∂y

�

xt + λ
∂φ

∂y
+ γρyt + γ λA2 .

(25)

Comparing Eqs. (24) and (25) we observe that the dissipation originates two new
terms: a dissipation force proportional to the velocity, and an extra term proportional
to (A1, A2). This last term comes from the nonlinearity of the 2-contact Euler–
Lagrange equations with respect to the Lagrangian.

This system has the Lagrangian 2-contact symmetry

Y = ∂A2

∂x

∂

∂x
+ ∂A1

∂y

∂

∂y
.

The associated map F = (F t , F z) that satisfies the dissipation law for 2-vector fields
is

F t = −i(Y )ηt = ρxt

∂A2

∂x
+ λ

∂A2

∂x
A1 + ρyt

∂A1

∂y
+ λ

∂A1

∂y
A2,

F z = −i(Y )ηz = −τxz

∂A2

∂x
− τyz

∂A1

∂y
.

6. Conclusions and outlook

In a previous paper [15] we introduced the notion of k-contact structure to
describe Hamiltonian (De Donder–Weyl) covariant field theories with dissipation,
bringing together contact Hamiltonian mechanics and k-symplectic field theory.

In this paper, we have developed the Lagrangian counterpart of this theory,
basing on contact Lagrangian and k-contact Hamiltonian formalisms. Thus, we have
obtained and analyzed the Lagrangian (Euler–Lagrange) equations of dissipative field
theories. It should be pointed out that the regularity of the Lagrangian is required
to obtain a k-contact structure.

We have also studied several kinds of symmetries: dynamical symmetries (those
preserving solutions), k-contact symmetries (those preserving the k-contact structure
and the energy) and symmetries of the Lagrangian function. We have shown how
to associate a dissipation law with any dynamical symmetry.
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As interesting examples, we have constructed contact Lagrangian functions for
certain classes of elliptic and hyperbolic partial differential equations; in particular,
we have analyzed the example of the damped vibrating membrane. Another example
has shown the difference between the equations of the k-contact formulation of
a linear dissipation and the equations arising from magnetic-like terms appearing in
some Lagrangian functions of field theories.

Among future lines of research, the case of singular Lagrangians seems especially
interesting, though it would require to define the notions of k-precontact structure
and k-precontact Hamiltonian system, and to develop a constraint analysis to check
the consistency of field equations.
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[6] J. F. Cariñena, M. Crampin and L. A. Ibort: On the multisymplectic formalism for first order field theories,

Diff. Geom. Appl. 1(4), 345–374 (1991). (https://doi.org/10.1016/0926-2245(91)90013-Y).
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