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1. Introduction

Many theories in modern physics can be formulated using the tools of differ-
ential geometry. For instance, the natural geometric framework for autonomous
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Hamiltonian mechanical systems is symplectic geometry [1, 2, 31], whereas its
nonautonomous counterpart can be nicely described using cosymplectic geometry
[11, 12, 17]. Geometric approaches to field theory make use of multisymplectic and
k-symplectic geometry, among others [9, 16, 36]. All these methods are developed
to model systems of variational type without dissipation or damping, both in the
Lagrangian and Hamiltonian formalisms.

In recent years there has been a growing interest in studying a geometric frame-
work to describe dissipative systems [10, 18, 33, 35]. An especially useful tool is
contact geometry [3, 7, 8, 21]. Contact geometry has been used to describe several
types of physical systems in thermodynamics, quantum mechanics, circuit theory,
control theory, etc. (see for instance [5, 24, 29, 34]). In recent papers [19, 20] a
generalization of contact geometry has been used to describe field theories with
dissipation.

In this paper, we are primarily interested in mechanics. Contact geometry has
been applied to give a Hamiltonian-type description of mechanical systems with
dissipation [4, 6, 30, 32, 38], although in recent papers the Lagrangian formalism
has been also considered [13, 14]. The model introduced in [14] is more general
and it is inspired in the cosymplectic formulation of nonautonomous mechanical
systems; meanwhile the other one [13] describes a more particular, but very usual,
type of Lagrangian systems with dissipation.

Our aim is to enlarge these lines of research, giving new insights into the con-
tact formulation of these systems, both in the Hamiltonian and the Lagrangian
formalisms. While carefully reviewing these formulations, we present a new form
of the contact Hamiltonian and Lagrangian equations. We also expand the formu-
lation introduced in [13] and compare it with the one given in [14], and we show
that they are equivalent for the Lagrangians with dissipation studied in [13]. It is
interesting to point out that the first Lagrangian formulation of contact systems
was introduced by Herglotz, from a variational perspective, around 1930 [27, 28]
(see also [22]).

We also introduce and study symmetries and dissipated quantities in a geo-
metrical way. We define different kinds of symmetries for contact Hamiltonian and
Lagrangian systems (the so-called dynamical and contact), depending on which
structure is preserved, and establish the relations among them. We have also com-
pared the characteristics of symmetries for symplectic and contact dynamical sys-
tems, showing that there are significant differences between them. Other relevant
results are the statements of the so-called “dissipation theorems”, which are anal-
ogous to the conservation theorems of conservative systems, and the association of
dissipated and conserved quantities to these symmetries.

Some well-known physical examples are discussed using this geometric frame-
work. In particular, we propose contact Lagrangian functions that describe the
damped harmonic oscillator, the motion in a gravitational field with friction, and
the parachute equation.
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The paper is organized as follows. Section 2 is devoted to review several prelim-
inary concepts on contact geometry and contact Hamiltonian systems, including a
new setting of the dynamical equations. In Sec. 3, we study the Lagrangian formal-
ism for dissipative systems in detail, and we compare the formulations given in [13]
and [14]. In Sec. 4, we analyze the concepts of symmetry and dissipation law for
dissipative systems, prove a dissipation theorem and show how to obtain conserved
quantities. Finally, Sec. 5 is devoted to the examples.

Throughout the paper all the manifolds and mappings are assumed to be
smooth. Sum over crossed repeated indices is understood.

2. Preliminaries

In this section, we present some geometric structures that will be used to describe
the Lagrangian formalism of dissipative dynamical systems (see, for instance, [4, 6,
21, 30] for details).

2.1. Contact geometry and contact Hamiltonian systems

Definition 1. Let M be a (2n + 1)-dimensional manifold. A contact form in M is
a differential 1-form η ∈ Ω1(M) such that η∧ (dη)∧n is a volume form in M . Then,

(M, η) is said to be a contact manifold.

As a consequence of the condition that η ∧ (dη)∧n is a volume form we have a
decomposition of TM , induced by η, in the form TM = ker dη ⊕ ker η ≡ DR ⊕DC.

Proposition 2. Let (M, η) be a contact manifold. Then there exists a unique vector
field R ∈ X(M), which is called Reeb vector field, such that{

i(R)dη = 0,

i(R)η = 1.
(1)

This vector field generates the distribution DR, which is called the Reeb distri-
bution.

Proposition 3. On a contact manifold there exist local coordinates (xI ; s) such
that

R =
∂

∂s
, η = ds − fI(x)dxI ,

where fI(x) are functions depending only on the xI . (These are the so-called adapted
coordinates of the contact structure.)

Proof. Let (xI , s), I = 1, . . . , n, local coordinates in M rectifying the vector field
R, that is R = ∂/∂s in the domain of these coordinates.

Then η = a ds − fI(x, s)dxI . The conditions defining R imply that a = 1 and
∂fI/∂s = 0, hence the result is proved.

2050090-3



May 26, 2020 19:37 WSPC/S0219-8878 IJGMMP-J043 2050090

J. Gaset et al.

Nevertheless, one can go further and prove the existence of Darboux-type
coordinates.

Theorem 4 (Darboux theorem for contact manifolds). Let (M, η) be a con-
tact manifold. Then around each point p ∈ M there exist a chart (U ; qi, pi, s) with
1 ≤ i ≤ n such that

η|U = ds − pidqi.

These are the so-called Darboux or canonical coordinates of the contact manifold
(M, η).

In Darboux coordinates, the Reeb vector field is R|U = ∂
∂s .

Example 5 (Canonical contact structure). The manifold M = T∗Q×R has a
canonical contact structure defined by the 1-form η = ds−θ, where s is the Cartesian
coordinate of R, and θ is the pull-back of the canonical 1-form of T∗Q with respect
to the projection M → T∗Q. Using coordinates qi on Q and natural coordinates
(qi, pi) on T∗Q, the local expressions of the contact form is η = ds − pidqi; from
which dη = dqi ∧ dpi, and the Reeb vector field is R = ∂

∂s .

Example 6 (Contactification of a symplectic manifold). Let (P, ω) be a
symplectic manifold such that ω = −dθ, and consider M = P × R. Denoting by
s the Cartesian coordinate of R, and representing also by θ the pull-back of θ to
the product, we consider the 1-form η = ds − θ on M . Then (M, η) is a contact
manifold which is called the contactified of P . Note that Example 5, is just the
contactification of T∗Q with its canonical symplectic structure.

Finally, given a contact manifold (M, η), we have the following C∞(M)-module
isomorphism

� : X(M) → Ω1(M),

X �→ i(X)dη + (i(X)η)η.

Theorem 7. If (M, η) is a contact manifold, for every H ∈ C∞(M), there exists
a unique vector field XH ∈ X(M) such that{

i(XH)dη = dH− (LRH)η,

i(XH)η = −H.
(2)

Then, the integral curves of XH, c : I ⊂ R → M, are the solutions to the equations{
i(c′)dη = (dH− (LRH)η) ◦ c,

i(c′)η = −H ◦ c,
(3)

where c′ : I ⊂ R → TM is the canonical lift of the curve c to the tangent
bundle TM .
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Definition 8. The vector field XH is the contact Hamiltonian vector field asso-
ciated to H and Eqs. (2) and (3) are the contact Hamiltonian equations for this
vector field and its integral curves, respectively.

The triple (M, η,H) is a contact Hamiltonian system.

As a consequence of the definition of XH we have the following relation, which
expresses the dissipation of the Hamiltonian

LXHH = −(LRH)H. (4)

The proof is immediate

LXHH = −LXH i(XH)η = −i(XH)LXHη = i(XH)((LRH)η) = −(LRH)H.

Proposition 9. Let (M, η,H) be a contact Hamiltonian system. The following
assertions are equivalent :

(1) XH is a contact Hamiltonian vector field (i.e. a solution to Eqs. (2)).
(2) XH is a solution to the equations{

LXHη = −(LRH), η,

i(XH)η = −H,

(3) XH satisfies that

�(XH) = dH− (LRH + H)η.

In Sec. 2.2, we give another way of stating the equations for a contact Hamilto-
nian vector field.

Taking Darboux coordinates (qi, pi, s), the contact Hamiltonian vector field is

XH =
∂H
∂pi

∂

∂qi
−

(
∂H
∂qi

+ pi
∂H
∂s

)
∂

∂pi
+

(
pi

∂H
∂pi

−H
)

∂

∂s
;

and its integral curves γ(t) = (qi(t), pi(t), s(t)) are solutions to the dissipative
Hamilton equations (3) which read as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

q̇i =
∂H
∂pi

,

ṗi = −
(

∂H
∂qi

+ pi
∂H
∂s

)
,

ṡ = pi
∂H
∂pi

−H.

(5)

Remark 10. The case in which some of the conditions stated in Definition 1 do
not hold has been recently analyzed in [14], where the definitions and properties
of precontact structures and precontact manifolds are introduced and studied. In
particular, for this kind of manifolds, Reeb vector fields are not uniquely determined.
In these cases (M, η,H) is called a precontact Hamiltonian system.
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2.2. Equivalent form of the contact Hamiltonian equations

In this section, we present a new way of writing Eqs. (2) without making use of the
Reeb vector field R. This can be useful in the case of singular systems because, as
we have pointed out, in a precontact manifold we do not have a uniquely determined
Reeb vector field.

Proposition 11. Let (M, η,H) be a contact Hamiltonian system and consider the
open set U = {p ∈ M ;H(p) �= 0}. Let Ω be the 2-form defined by Ω = −Hdη +
dH ∧ η on U . A vector field X ∈ X(U) is the contact Hamiltonian vector field if,
and only if, {

i(X)Ω = 0,

i(X)η = −H.
(6)

Proof. Suppose that X satisfies Eq. (6). Then,

0 = i(X)Ω = −Hi(X)dη + (i(X)dH)η + HdH,

and hence

Hi(X)dη = (i(X)dH)η + HdH. (7)

Contracting with the Reeb vector field,

0 = H i(R)i(X)dη = (i(X)dH)i(R)η + Hi(R)dH,

and i(X)dH = −H i(R)dH. Using this in Eq. (7), we get

Hi(X)dη = H(dH− (i(R)dH)η) = H(dH− (LRH)η),

and hence i(X)dη = dH− (LRH)η.
Now, suppose that X satisfies Eqs. (2). Then

i(X)Ω = i(X)(−Hdη + dH ∧ η) = −Hi(X)dη + (i(X)dH)η + HdH
= H(LRH)η + (LXH)η = (H(LRH) + (LXH))η = 0,

hence i(X)Ω = 0, using the dissipation of the Hamiltonian H (4).

Remark 12. Let p ∈ M and suppose that H(p) = 0. Then the second equation
in both groups (2) and (6) gives i(Xp)η = 0, hence Xp ∈ ker ηp. The remaining
equation in (2) is i(Xp)dη = dH(p) − (LRpH)ηp, and the corresponding one in (6)
is i(Xp)Ω = (LXpH)ηp = 0. These two equations are not equivalent. In fact the
first one implies the second, using the dissipation of the Hamiltonian, but not on
the contrary.

Finally, bearing in mind Theorem 7, we can state as follows.

Proposition 13. On the open set U = {p ∈ M ;H �= 0}, a path c : I ⊂ R → M is
an integral curve of the contact Hamiltonian vector field XH if, and only if, it is a
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solution to {
i(c′)Ω = 0,

i(c′)η = −H ◦ c.

3. Lagrangian Formalism for Dissipative Dynamical Systems

3.1. Lagrangian phase space and geometric structures

If Q is an n-dimensional manifold, consider the product manifold TQ × R with
canonical projections

s : TQ × R → R, τ1 : TQ × R → TQ, τ0 : TQ × R → Q × R.

Note that τ1 and τ0 are the projection maps of two vector bundle structures. We
will usually have the second one in mind; indeed, with this structure TQ × R is
the pull-back of the tangent bundle TQ with respect the map Q×R → Q. Natural
coordinates in TQ × R will be denoted (qi, vi, s).

In order to develop a contact Lagrangian formalism we need to extend the
usual geometric structures of Lagrangian mechanics to the Lagrangian phase space.
Note that, as a product manifold, we can write T(TQ × R) = (T(TQ)) × R) ⊕
(TQ × TR), so any operation that can act on tangent vectors to TQ can act on
tangent vectors to TQ × R. In particular, the vertical endomorphism of T(TQ)
yields a vertical endomorphism J : T(TQ × R) → T(TQ × R). Similarly, the
Liouville vector field on TQ yields a Liouville vector field Δ ∈ X(TQ × R); indeed,
this is the Liouville vector field of the vector bundle structure defined by τ0.

In natural coordinates, the local expressions of these objects are

J =
∂

∂vi
⊗ dqi, Δ = vi ∂

∂vi
.

Definition 14. Let c : R → Q × R be a path, with c = (c1, c2). The prolongation
of c to TQ × R is the path

c̃ = (c′1, c2) : R → TQ × R,

where c′1 is the velocity of c1. The path c̃ is said to be holonomic.
A vector field Γ ∈ X(TQ × R) is said to satisfy the second-order condition (for

short: is a sode) when all of its integral curves are holonomic.

This definition can be equivalently expressed in terms of the canonical structures
defined above.

Proposition 15. A vector field Γ ∈ X(TQ×R) is a sode if, and only if, J ◦Γ = Δ.

In coordinates, if c(t) = (ci(t), s(t)), then

c̃(t) =
(

ci(t),
dci

dt
(t), s(t)

)
.
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The local expression of a sode is

Γ = vi ∂

∂qi
+ f i ∂

∂vi
+ g

∂

∂s
. (8)

So, in coordinates a sode defines a system of differential equations of the form

d2qi

dt2
= f i(q, q̇, s),

ds

dt
= g(q, q̇, s).

3.2. Contact Lagrangian systems

A general setting of the Lagrangian formalism for dissipative mechanical systems
has been recently developed by León and Lainz-Valcázar [14]. Next, we review this
formulation and give new additional features.

Definition 16. A Lagrangian function is a function L : TQ × R → R.
The Lagrangian energy associated with L is the function EL := Δ(L) − L ∈

C∞(TQ × R).
The Cartan forms associated with L are defined as

θL = tJ ◦ dL ∈ Ω1(TQ × R), ωL = −dθL ∈ Ω2(TQ × R). (9)

The contact Lagrangian form is

ηL = ds − θL ∈ Ω1(TQ × R);

it satisfies that dηL = ωL.
The couple (TQ × R,L) is a contact Lagrangian system.

Taking natural coordinates (qi, vi, s) in TQ × R, the form ηL is written as

ηL = ds − ∂L
∂vi

dqi, (10)

and consequently

dηL = − ∂2L
∂s∂vi

ds ∧ dqi − ∂2L
∂qj∂vi

dqj ∧ dqi − ∂2L
∂vj∂vi

dvj ∧ dqi.

The next structure to be defined is the Legendre map. Before, remember that,
given a (not necessarily linear) bundle map f : E → F between two vector bundles
over a manifold B, the fiber derivative of f is the map Ff : E → Hom(E, F ) ≈
F ⊗ E∗ obtained by restricting f to the fibers, fb :Eb → Fb, and computing the
usual derivative of a map between two vector spaces: Ff(eb) = Dfb(eb) — see [25]
for a detailed account. This applies in particular when the second vector bundle is
trivial of rank 1, that is, for a function f : E → R; then Ff :E → E∗. This map
also has a fiber derivative F2f : E → E∗⊗E∗, which can be called the fiber Hessian
of f ; for every eb ∈ E, F2f(eb) can be considered as a symmetric bilinear form on
Eb. It is easy to check that Ff is a local diffeomorphism at a point e ∈ E if and
only if the Hessian F2f(e) is non-degenerate.
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Definition 17. Given a Lagrangian L : TQ × R → R, its Legendre map is the
fiber derivative of L, considered as a function on the vector bundle τ0 : TQ × R →
Q × R; that is, the map FL : TQ × R → T∗Q × R given by

FL(vq , s) =
(FL(·, s)(vq), s

)
,

where L(·, s) is the Lagrangian with s freezed.

Remark 18. The Cartan forms can also be defined as

θL = FL ∗(π∗
1θ), ωL = FL ∗(π∗

1ω).

Proposition 19. For a Lagrangian function L the following conditions are
equivalent :

(1) The Legendre map FL is a local diffeomorphism.
(2) The fiber Hesian F2L : TQ × R → (T∗Q × R) ⊗ (T∗Q × R) of L is everywhere

nondegenerate. (The tensor product is of vector bundles over Q × R.)
(3) (TQ × R, ηL) is a contact manifold.

The proof of this result can be easily done using natural coordinates, where

FL : (qi, vi, s) →
(

qi,
∂L
∂vi

, s

)
,

F2L(qi, vi, s) = (qi, Wij , s), with Wij =
(

∂2L
∂vi∂vj

)
.

Then the conditions in the proposition mean that the matrix W = (Wij) is every-
where nonsingular.

Definition 20. A Lagrangian function L is said to be regular if the equivalent
conditions in Proposition 19 hold. Otherwise L is called a singular Lagrangian. In
particular, L is said to be hyperregular if FL is a global diffeomorphism.

Remark 21. As a result of the preceding definitions and results, every regular
contact Lagrangian system has associated the contact Hamiltonian system (TQ ×
R, ηL, EL).

Given a regular contact Lagrangian system (TQ×R,L), from (1) we have that
the Reeb vector field RL ∈ X(TQ × R) for this system is uniquely determined by
the relations {

i(RL)dηL = 0,

i(RL)ηL = 1.
(11)

Its local expression is

RL =
∂

∂s
− W ji ∂2L

∂s∂vj

∂

∂vi
, (12)

where (W ij) is the inverse of the Hessian matrix, namely W ijWjk = δi
k.
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Note that the Reeb vector field does not appear in the simplest form ∂/∂s.
This is due to the fact that the natural coordinates in TQ × R are not adapted
coordinates for ηL.

3.3. The contact Euler–Lagrange equations

Definition 22. Let (TQ × R,L) be a regular contact Lagrangian system.
The contact Euler–Lagrange equations for a holonomic curve c̃ : I ⊂ R → TQ×R

are {
i(c̃′)dηL = (dEL − (LRLEL)ηL) ◦ c̃,

i(c̃′)ηL = −EL ◦ c̃,
(13)

where c̃′ : I ⊂ R → T(TQ × R) denotes the canonical lifting of c̃ to T(TQ × R).
The contact Lagrangian equations for a vector field XL ∈ X(TQ × R) are{

i(XL)dηL = dEL − (LRLEL)ηL,

i(XL)ηL = −EL.
(14)

A vector field which is a solution to these equations is called a contact Lagrangian
vector field (it is a contact Hamiltonian vector field for the function EL).

Remark 23. Now, taking into account Propositions 11 and 13, in the open set
U = {p ∈ M ; EL(p) �= 0}, the above equations can be stated equivalently as{

i(c̃′)ΩL = 0,

i(c̃′)ηL = −EL ◦ c̃,
(15)

and {
i(XL)ΩL = 0,

i(XL)ηL = −EL,
(16)

where ΩL = −EL dηL + dEL ∧ ηL.

In natural coordinates, for a holonomic curve c̃(t) = (qi(t), q̇i(t), s(t)), Eq. (13)
are

ṡ = L, (17)

∂2L
∂vj∂vi

q̈j +
∂2L

∂qj∂vi
q̇j +

∂2L
∂s∂vi

ṡ − ∂L
∂qi

=
d

dt

(
∂L
∂vi

)
− ∂L

∂qi
=

∂L
∂s

∂L
∂vi

, (18)

(which coincide with the so-called generalized Euler–Lagrange equations stated
in [27]); meanwhile, for a vector field XL = f i ∂

∂qi + F i ∂
∂vi + g ∂

∂s ,
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Eq. (14) are

(f j − vj)
∂2L

∂vj∂s
= 0, (19)

(f j − vj)
∂2L

∂vi∂vj
= 0, (20)

(f j − vj)
∂2L

∂qi∂vj
+

∂L
∂qi

− ∂2L
∂s∂vi

g − ∂2L
∂qj∂vi

f j

− ∂2L
∂vj∂vi

F j +
∂L
∂s

∂L
∂vi

= 0, (21)

L +
∂L
∂vi

(f i − vi) − g = 0. (22)

For these computations it is useful to use the relation

LRLEL = −∂L
∂s

, (23)

which is easily proved in coordinates.

Proposition 24. If L is a regular Lagrangian, then XL is a sode and the Eqs. (22)
and (21) become

g = L, (24)

∂2L
∂vj∂vi

F j +
∂2L

∂qj∂vi
vj +

∂2L
∂s∂vi

L − ∂L
∂qi

=
∂L
∂s

∂L
∂vi

, (25)

which, for the integral curves of XL, are the Euler–Lagrange equations (17)
and (18).

This sode XL ≡ ΓL is called the Euler–Lagrange vector field associated with
the Lagrangian function L.

Proof. It follows from the coordinate expressions. If L is a regular Lagrangian,
Eqs. (20) lead to vi = f i, which are the sode condition for the vector field XL. Then,
(19) holds identically, and (22) and (21) give Eqs. (24) and (25) or, equivalently,
for the integral curves of XL, the Euler–Lagrange equations (17) and (18).

In this way, the local expression of this Euler–Lagrange vector field is

ΓL = L ∂

∂s
+ vi ∂

∂qi
+ W ik

(
∂L
∂qk

− ∂2L
∂qj∂vk

vj − L ∂2L
∂s∂vk

+
∂L
∂s

∂L
∂vk

)
∂

∂vi
.

(26)

Remark 25. It is interesting to point out how, in the Lagrangian formalism of
dissipative systems, the expression in coordinates (17) of the second Lagrangian

2050090-11



May 26, 2020 19:37 WSPC/S0219-8878 IJGMMP-J043 2050090

J. Gaset et al.

equation (14) relates the variation of the “dissipation coordinate” s to the
Lagrangian function and, from here, we can identify this coordinate with the
Lagrangian action, s =

∫ L dt.

Remark 26. If L is singular, although (TQ × R, ηL) is not a contact manifold, but
a pre-contact one, and hence the Reeb vector field is not uniquely defined, it can
be proved that the Lagrangian equations (14) are independent on the Reeb vector
field used [14]. Alternatively, Proposition 11 holds also in this case and, hence, the
Reeb-independent equations (16) can be used instead. In any case, solutions to the
Lagrangian equations are not necessarily sode and, in order to obtain the Euler–
Lagrange equations (25) (or (18)), the condition J (XL) = Δ must be added to
the above Lagrangian equations. Furthermore, these equations are not necessarily
compatible everywhere on TQ × R and a suitable constraint algorithm must be
implemented in order to find a final constraint submanifold Sf ↪→ TQ × R (if
it exists) where there are sode vector fields XL ∈ X(TQ × R), tangent to Sf ,
which are (not necessarily unique) solutions to the above equations on Sf . All
these problems have been studied in detail in [14].

3.4. The canonical Hamiltonian formalism for contact

Lagrangian systems

In the (hyper)regular case, we have a diffeomorphism between (TQ × R, ηL) and
(T∗Q × R, η), where FL ∗η = ηL. Furthermore, there exists (maybe locally) a
function H ∈ C∞(T∗Q × R) such that FL ∗H = EL; then we have the contact
Hamiltonian system (T∗Q × R, η,H), for which FL∗RL = R. Then, if XH ∈
X(T∗Q×R) is the contact Hamiltonian vector field associated with H, we have that
FL∗ΓL = XH.

For singular Lagrangians, following [23] we define as follows.

Definition 27. A singular Lagrangian L is said to be almost-regular if P :=
FL(TQ) is a closed submanifold of T∗Q × R, the Legendre map FL is a sub-
mersion onto its image, and the fibers FL−1(FL(vq, s)), for every (vq, s) ∈
TQ × R, are connected submanifolds of TQ × R.

In these cases, we have (P , ηP), where ηP = j∗Pη ∈ Ω1(P), and jP :P ↪→
T∗Q × R is the natural embedding. Furthermore, the Lagrangian energy func-
tion EL is FL-projectable; i.e. there is a unique HP ∈ C∞(P) such that EL =
FL∗

o HP , where FLo : TQ × R → P is the restriction of FL to P , defined by
FL = jP ◦ FLo. Then, there exists a Hamiltonian formalism associated with the
original Lagrangian system, which is developed on the submanifold P , and the con-
tact Hamiltonian equations for XHP ∈ X(P) are (2) adapted to this situation or,
equivalently, {

i(XHP )ΩP = 0,

i(XHP )ηP = −HP ,
(27)
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where ΩP = −HP dηP + dHP ∧ ηP . As in the Lagrangian formalism, these
equations are not necessarily compatible everywhere on P and a suitable con-
straint algorithm must be implemented in order to find a final constraint submani-
fold Pf ↪→ P (if it exists) where there are vector fields XHP ∈ X(P), tangent to Pf ,
which are (not necessarily unique) solutions to (27) on Pf . (See [14] for a detailed
analysis on all these topics.)

3.5. Lagrangians with holonomic dissipation term

In a recent paper by Ciaglia et al. [13] a Lagrangian description for some systems
with dissipation was given using a modification of Lagrangian formalism inspired by
the contact Hamiltonian formalism. In this section, we will see that this description
coincides with the general formalism studied in Sec. 3.2 when applied to a particular
class of contact Lagrangians.

Definition 28. A Lagrangian with holonomic dissipation term in TQ × R is a
function L = L + φ ∈ C∞(TQ × R), where L = τ ∗

1 Lo, for a Lagrangian function
Lo ∈ C∞(TQ), and φ = τ ∗

0 φo, for φo ∈ C∞(Q × R).

In coordinates, L(qi, vi, s) = L(qi, vi) + φ(qi, s). Observe that this implies that
the momenta defined by the Legendre transformation are independent of the coor-
dinate s. In addition, for these Lagrangians the conditions ∂2L

∂vi∂s = 0 hold. This
motivates the name given in the definition.

Remark 29. The Lagrangian formalism presented in [13] is a little less general
than the one we examine here, since there only the case φ = φ(s) is considered.

Proposition 30. Let L = L+φ be a Lagrangian with holonomic dissipation term.
Then its Cartan 1-form, contact form, energy and Reeb vector field as a contact
Lagrangian can be computed as

θL = θL, ηL = ds − θL, EL = EL − φ, RL =
∂

∂s
,

where θL is the Cartan 1-form of L considered (via pull-back) as a 1-form on
TQ × R, and EL is the energy of L as a function in the same way on TQ × R.

The Legendre map of L, FL : TQ × R → T∗Q × R, can be expressed as
FL = FL × IdR, where FL is the Legendre map of L. The Hessians are related by
F2L(vq , s) = F2L(vq). Moreover, L is regular if, and only if, L is regular.

Proof. It is immediate in coordinates. In particular, the assertion about the Leg-
endre map is a consequence of the fact that ∂L/∂vi = ∂L/∂vi. In a similar way the
relation between the Hessians can be expressed in coordinates as ∂2L

∂vi∂vj = ∂2L
∂vi∂vj .

This shows that L is regular if, and only if, L is regular.

Obviously L is hyperregular if, and only if, L also is. This means that the
Legendre map FL is a diffeomorphism, and the canonical Hamiltonian formalism
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for the Lagrangian with nonholonomic dissipation term can be formulated as in
Sec. 3.4.

For the contact Lagrangian system (TQ × R, ηL, EL) the dynamical equations
for vector fields are {

i(XL)dηL = dEL − (LRLEL)ηL,

i(XL)ηL = −EL.

In coordinates, writing XL = g ∂
∂s + f i ∂

∂qi +F i ∂
∂vi , the second Lagrangian equation

for XL reads, in coordinates,

L +
∂L

∂vi
(f i − vi) − g = 0, (28)

and this is Eq. (22) for L = L + φ. The first Lagrangian equation gives

(f i − vi)
∂2L

∂vj∂vi
= 0, (29)

and(
∂2L

∂qi∂vj
− ∂2L

∂qj∂vi

)
f j +

∂2L

∂qi∂vj
vj − ∂2L

∂vj∂vi
F j = − ∂L

∂qi
− ∂φ

∂qi
− ∂φ

∂s

∂L

∂vi
,

(30)

which is Eq. (21) for L. Observe that Eq. (19) are identities, since ∂2L
∂vj∂s = 0.

Finally, as in Proposition 24, if L is a regular Lagrangian then Eq. (29) implies
that f i = vi, that is, XL is a sode, and the equations of motion become

g = L, (31)

∂2L

∂vj∂vi
q̈j +

∂2L

∂qj∂vi
q̇j − ∂L

∂qi
=

d

dt

(
∂L

∂vi

)
− ∂L

∂qi
=

∂φ

∂qi
+

∂φ

∂s

∂L

∂vi
. (32)

These are the expression in coordinates of the contact Euler–Lagrange equations.

4. Symmetries of Contact Hamiltonian and Lagrangian Systems

4.1. Symmetries for contact Hamiltonian systems

For a dynamical system, there are different concepts of symmetry which depend
on which structure they preserve. Thus, one can consider the transformations that
preserve the geometric structures of the system, or those that preserve its solutions
[26, 37]. Next, we discuss these subjects for contact systems. (See also [15] for
another complementary approach on these topics.)

Let (M, η,H) be a contact Hamiltonian system with Reeb vector field R, and
XH the contact Hamiltonian vector field for this system; that is, the solution to the
Hamilton equations (2).
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Definition 31. A dynamical symmetry of a contact Hamiltonian system is a
diffeomorphism Φ :M → M such that Φ∗XH = XH (it maps solutions into
solutions).

An infinitesimal dynamical symmetry of a contact Hamiltonian system is a
vector field Y ∈ X(M) whose local flow is a dynamical symmetry; that is,
LY XH = [Y, XH] = 0.

There are other kinds of symmetries that let the geometric structures invariant.
They are the following.

Definition 32. A contact symmetry of a contact Hamiltonian system is a diffeo-
morphism Φ :M → M such that

Φ∗η = η, Φ∗H = H.

An infinitesimal contact symmetry of a contact Hamiltonian system is a vector field
Y ∈ X(M) whose local flow is a contact symmetry; that is,

LY η = 0, LY H = 0.

Furthermore we have the following.

Proposition 33. Every (infinitesimal) contact symmetry preserves the Reeb vector
field; that is, Φ∗R = R (or [Y,R] = 0).

Proof. We obtain that

i(Φ−1
∗ R)(Φ∗dη) = Φ∗(i(R)dη) = 0,

i(Φ−1
∗ R)(Φ∗η) = Φ∗(i(R)η) = 1,

and, as Φ∗η = η and the Reeb vector fields are unique, from these equalities
we get Φ−1

∗ R = R. The proof for the infinitesimal case is immediate from the
definition.

Finally, as a consequence of all of this we obtain the relation among contact
symmetries and dynamical symmetries as follows.

Proposition 34. (Infinitesimal) contact symmetries are (infinitesimal) dynamical
symmetries.

Proof. If XH is the contact Lagrangian vector field, then

i(Φ∗XH)dη = i(Φ∗XH)(Φ∗dη) = Φ∗(i(XH)dη)

= Φ∗(dH− (LRH)η) = dH− (LRH)η,

i(Φ∗XH)η = i(Φ∗XH)(Φ∗η) = Φ∗(i(XH)η) = Φ∗(−H) = −H.

The proof for the infinitesimal case is immediate from the definition.
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4.2. Dissipated and conserved quantities of contact

Hamiltonian systems

Associated with symmetries of contact Hamiltonian systems are the concepts of
dissipated and conserved quantities as follows.

Definition 35. A dissipated quantity of a contact Hamiltonian system is a function
F ∈ C∞(M) satisfying that

LXHF = −(LRH)F. (33)

For contact Hamiltonian systems, symmetries are associated with dissipated
quantities as follows.

Theorem 36 (Dissipation theorem). Let Y be a vector field on M . If Y is an
infinitesimal dynamical symmetry ([Y, XH ] = 0), then the function F = −i(Y )η is
a dissipated quantity.

Proof. This is a consequence of

LXHF = −LXH i(Y )η = −i(Y )LXHη − i(LXH Y )η

= (LRH)i(Y )η + i([Y, XH ])η = −(LRH)F + i([Y, XH ])η

= −(LRH)F,

where we have applied the second assertion of Proposition 9.

Remark 37. The last equality shows that, indeed, [Y, XH] ∈ Ker η is a necessary
and sufficient condition for F to be a dissipated quantity. This has been noted in
[15] while this paper was under review. Nevertheless, it should be noted that such
transformations are not dynamical symmetries in the sense of Definition 31, since
they do not transform solutions into solutions, in general.

In particular, as it was established in (4), the Hamiltonian vector field XH is
trivially a symmetry and its dissipated quantity is the energy, F = −i(XH)η = H;
that is shown in the following:

Theorem 38 (Energy dissipation theorem). LXHH = −(LRH)H.

Remark 39. Observe that these are “non-conservation theorems”. As we are deal-
ing with dissipative systems, dynamical symmetries are not associated with con-
served quantities, but with dissipative quantities, and then these theorems account
for the non-conservation of these quantities associated with the symmetries. In
particular, the energy is not a conserved quantity, as it was early commented in
Sec. 2.

Definition 40. A conserved quantity is a function G : M → R satisfying that

LXHG = 0.
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Every dissipated quantity changes with the same rate (−R(H)), which sug-
gests that the quotient of two dissipated quantities should be a conserved quantity.
Indeed:

Proposition 41. (1) If F1 and F2 are dissipated quantities and F2 �= 0, then F1/F2

is a conserved quantity.
(2) If F is a dissipated quantity and G is a conserved quantity, then FG is a

dissipated quantity.

Proof. In fact, we have

LXH(F1/F2) = F−1
2 LXHF1 − F1F

−2
2 LXHF2

= −F−1
2 (LRH)F1 + F1F

−2
2 (LRH)F2 = 0,

LXH(FG) = GLXHF + FLXHG = −(LRH)FG.

Remark 42. If H �= 0, it is possible to assign a conserved quantity to an infinites-
imal dynamical symmetry Y . Indeed, from Theorem 36 and Proposition 41, the
function −i(Y )η/H is a conserved quantity.

Finally, contact symmetries can be used to generate new dissipated quantities
from a given dissipated quantity. In fact, as a straightforward consequence of defi-
nitions 35 and 31 we obtain the following

Proposition 43. If Φ : M → M is a contact symmetry and F : M → R is a dissi-
pated quantity, then so is Φ∗F .

Proof. In fact, we have

LXH(Φ∗F ) = Φ∗LΦ∗XHF = Φ∗LXHF = Φ∗(−LRH)F = −(LRH)(Φ∗F ).

The proof for the infinitesimal case is immediate from the definition.

4.3. Symmetries for contact canonical Hamiltonian systems

Let M = T∗Q × R be canonical contact structure with the contact form η =
ds − pidqi (see Example 5).

Remember that, if ϕ : Q → Q is a diffeomorphism, we can construct the diffeo-
morphism Φ := (T∗ϕ, IdR) : T∗Q × R → T∗Q × R, where T∗ϕ : T∗Q → T∗Q is the
canonical lifting of ϕ to T∗Q. Then Φ is said to be the canonical lifting of ϕ to
T∗Q × R. Any transformation Φ of this kind is called a natural transformation of
T∗Q × R.

In the same way, given a vector field Z ∈ X(Q) we can define its complete lifting
to T∗Q × R as the vector field Y ∈ X(T∗Q × R) whose local flow is the canonical
lifting of the local flow of Z to T∗Q × R; that is, the vector field Y = ZC∗, where
ZC∗ denotes the complete lifting of Z to T∗Q, identified in a natural way as a
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vector field in T∗Q×R. Any infinitesimal transformation Y of this kind is called a
natural infinitesimal transformation of T∗Q × R.

It is well known that the canonical forms θo and ωo = −dθo in T∗Q are invariant
under the action of canonical liftings of diffeomorphisms and vector fields from Q

to T∗Q. Then, taking into account the definition of the contact form η in T∗Q×R,
as an immediate consequence of the above considerations we have:

Proposition 44. If Φ ∈ Diff(T∗Q × R) (respectively, Y ∈ X(T∗Q × R)) is a
canonical lifting to T∗Q × R of a diffeomorphism ϕ ∈ Diff(Q) (respectively, of
Z ∈ X(Q)), then

(1) Φ∗η = η (respectively, LY η = 0).
(2) If, in addition, Φ∗H = H (respectively, LY H = 0), then it is a (infinitesimal)

contact symmetry.

In particular, we have the following.

Theorem 45 (Momentum dissipation theorem). If ∂H
∂qi = 0, then ∂

∂qi is an
infinitesimal contact symmetry, and its associated dissipated quantity is the corre-
sponding momentum pi; that is, LXHpi = −(LRH)pi.

Proof. A simple computation in local coordinates shows that L( ∂
∂qi )η = 0 and

L( ∂
∂qi )H = 0. Therefore, it is a contact symmetry and, in particular, a dynamical

symmetry. The other results are a consequence of the dissipation theorem.

4.4. Symmetries for contact Lagrangian systems

Consider a regular contact Lagrangian system (TQ × R,L), with Reeb vector field
RL, and let XL be the contact Euler–Lagrange vector field for this system; that is,
the solution to the Lagrangian equations (14).

All we have said about symmetries and dissipated quantities for contact Hamil-
tonian systems holds when it is applied to the contact system (TQ × R, ηL, EL).
Thus we have the same definitions for dynamical and contact symmetries and the
dissipation theorem states that −i(Y )ηL is a dissipated quantity, for every infinitesi-
mal dynamical symmetry Y . In particular, the energy dissipation theorem says that

LXLEL = −(LRLEL)EL.

In the same way as for T∗Q × R, if ϕ : Q → Q is a diffeomorphism, we
can construct the diffeomorphism Φ := (Tϕ, IdR) : TQ × R → TQ × R, where
Tϕ : TQ → TQ is the canonical lifting of ϕ to TQ. Then Φ is said to be the canon-
ical lifting of ϕ to TQ × R. Any transformation Φ of this kind is called a natural
transformation of TQ × R.

Moreover, given a vector field Z ∈ X(TQ) we can define its complete lifting
to TQ × R as the vector field Y ∈ X(TQ × R) whose local flow is the canonical
lifting of the local flow of Z to TQ × R; that is, the vector field Y = ZC , where
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ZC denotes the complete lifting of Z to TQ, identified in a natural way as a vector
field in TQ×R. Any infinitesimal transformation Y of this kind is called a natural
infinitesimal transformation of TQ × R.

It is well known that the vertical endomorphism J and the Liouville vector field
Δo in TQ are invariant under the action of canonical liftings of diffeomorphisms
and vector fields from Q to TQ. Then, taking into account the definitions of the
canonical endomorphism J and the Liouville vector field Δ in TQ × R, it can
be proved that canonical liftings of diffeomorphisms and vector fields from Q to
TQ × R preserve these canonical structures as well as the Reeb vector
field R.

Therefore, as an immediate consequence, we obtain a relation between
Lagrangian-preserving natural transformations and contact symmetries:

Proposition 46. If Φ ∈ Diff(TQ×R) (respectively, Y ∈ X(TQ×R)) is a canonical
lifting to TQ × R of a diffeomorphism ϕ ∈ Diff(Q) (respectively, of a vector field
Z ∈ X(Q)) that leaves the Lagrangian invariant, then it is a (infinitesimal) contact
symmetry, i.e.

Φ∗ηL = ηL, Φ∗EL = EL (respectively , LY ηL = 0, LY EL = 0).

As a consequence, it is a (infinitesimal) dynamical symmetry.

As a consequence we have a result similar to the momentum dissipation Theo-
rem 45: if ∂L

∂qi = 0, then ∂
∂qi is an infinitesimal contact symmetry and it associated

dissipated quantity is the momentum ∂L
∂vi ; that is,

LXL

(
∂L
∂vi

)
= −(LRLEL)

∂L
∂vi

=
∂L
∂s

∂L
∂vi

.

Remark 47. A similar problem is considered in [22], where the used dissipa-
tion factor is ∂L

∂s which, as we have seen in Eq. (23), is the same that we have
obtained.

4.5. Symmetries of a contactified system

The dissipation theorem (Theorem 36) yields a dissipated quantity from a dynam-
ical symmetry Y with no additional hypotheses. This is in contrast to Noether
symmetries, where the generator of the symmetry has to satisfy some additional
hypotheses in order to yield a conserved quantity. We want to understand this
different behavior.

So, let us consider a Hamiltonian system (P, ω, H◦) on an exact symplectic
manifold P , with symplectic form ω = −dθ, and Hamiltonian function H◦ : P → R.
Its associated Hamiltonian vector field X◦ ∈ X(P ) is defined by iX◦ω = dH◦.

The contactified of (P, ω) is the contact manifold (M, η), where M = P × R

is endowed with the contact form η = ds − θ; here s is the Cartesian coordinate
of R, and we use θ for the pull-back of the 1-form to the product (see Example 6).
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The pull-back of H◦ to M defines a contact Hamiltonian function H = H◦ on M .
The corresponding contact Hamiltonian vector field can be written X = X◦ + � ∂

∂s ,
where X◦ is the Hamiltonian vector field of H◦ as a vector field on the product
manifold, and � = 〈θ, X◦〉 − H◦.

Now, let Y◦ ∈ X(P ) be a vector field, and construct Y = Y◦ + b ∂
∂s , with

b :P → R a function.

Lemma 48. The vector field Y is a dynamical symmetry of X (LY X = 0) if, and
only if, Y◦ is a dynamical symmetry of X◦ (LY◦X◦ = 0) and LY � = LXb.

Proof. The proof is a consequence of a direct calculation

[Y, X ] = [Y◦, X◦] + (LY � − LXb)
∂

∂s
.

Now let us consider the quantity

G = −i(Y )η = −i(Yo)η − b.

We have

LXG = −i(Y )LXη − i([X, Y ])η

= (LRH)i(Y )η − i(Y )(LXη + (LRH)η) + i([Y, X ])η

= (LRH)i(Y )η − i(Y )(LXη + (LRH)η) + i([Y◦, X◦])η + (LY � − LXb).

Let us analyze the vanishing of these summands: the first one is zero because
H = H◦ does not depend on s, the second one also is because X is the contact
Hamiltonian vector field, and, according to the lemma, the third and forth ones
vanish if LY X = 0. So, we conclude that, if Y is a dynamical symmetry of X , G is
a conserved quantity for the contact dynamics X (conserved rather than dissipated,
since H does not depend on s). Now, note that

LXG = LX◦ i(Y◦)θ − LXb.

So, we arrive at the following interpretation: when Y0 is a dynamical symmetry
of X◦, the function G◦ = i(Y )θ is not necessarily a conserved quantity of X◦
(the hypothesis of Noether’s theorem are not necessarily satisfied). However, in
the contactified Hamiltonian system, with Y a dynamical symmetry projectable
to Y◦,

LXG◦ = LX(G + b) = LXb = LY �,

and the time-derivative of G◦ is compensated by the time-derivative of b.
When is G◦ conserved by X◦? When LY◦� = 0. This happens, for instance,

when Y◦ is an exact Noether symmetry, i.e. when LY◦θ = 0 and LY◦H◦ = 0,
since

LY◦� = LY◦(i(X◦)θ − H◦) = 0.
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5. Examples

5.1. The damped harmonic oscillator

The Lagrangian description of the one-dimensional harmonic oscillator is given by
Q = R and L = 1

2mv2 − 1
2mω2q2. The Euler–Lagrange equation gives

q̈ + ω2q = 0.

Taking M = R × R and the contact form η = ds − vdq, we can introduce the
Lagrangian L = L + φ, with holonomic dissipation term φ = −γs, and thus EL =
1
2mv2 + 1

2mω2q2 + γs. We have as dynamical equation

q̈ = −ω2q − γq̇

corresponding to the dynamical equation of the damped harmonic oscillator. There-
fore, the contact Lagrangian vector field is

ΓL = L ∂

∂s
+ v

∂

∂q
− (ω2q + γv)

∂

∂v
.

The dissipation of the energy is given by Theorem 38,

LΓLEL = −γEL.

5.2. Motion in a constant gravitational field with friction

Consider the motion of a particle in a vertical plane under the action of con-
stant gravity; then Q = R

2 with coordinates (x, y). This motion is described by
the Lagrangian L = 1

2mv2 − mgy, where v2 = v2
x + v2

y in TQ with coordinates
(x, y, vx, vy).

To introduce air friction, we consider the Lagrangian with holonomic dissipation
term L = L − γs in M = TQ × R, with coordinates (x, y, vy, vx, s). We have

θL = mvxdx + mvydy,

ηL = ds − θL = ds − mvxdx − mvydy,

dηL = mdx ∧ dvx + mdy ∧ dvy ,

EL =
1
2
mv2 + mgy + γs,

RL =
∂

∂s
.

The dynamical equations are

i(X)dηL = dEL −RL(EL)ηL, (34)

i(X)η = −EL. (35)
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Writing X ∈ X(TQ × R) as

X = a
∂

∂s
+ b

∂

∂x
+ c

∂

∂y
+ d

∂

∂vx
+ e

∂

∂vy
,

and using that

dEL = mvxdvx + mvydvy + mgdy + γds

and that

RL(EL)ηL = γds − γmvxdx − γmvydy,

from Eq. (35) we get that a = bvx + cvy − EL, while Eq. (34) gives the following
conditions:

b = vx, c = vy, d = −γvx, e = −γvy − g.

The first two conditions imply that a = L. Summing up, the contact Lagrangian
vector field is

ΓL = L ∂

∂s
+ vx

∂

∂x
+ vy

∂

∂y
− γvx

∂

∂vx
− (g + γvy)

∂

∂vy
.

Hence, we get the following system of differential equations:⎧⎪⎪⎨
⎪⎪⎩

ẍ + γẋ = 0,

ÿ + γẏ + g = 0,

ṡ = L.

As in the previous example, the energy dissipation is given by Theorem 38

LΓLEL = −γEL.

We also have that ∂L
∂x = 0, thus it is immediate to check that ∂

∂x is a contact
symmetry. The associated dissipated quantity is its corresponding momentum: px =
∂L
∂vx

= mvx. The dissipation of this quantity is given by Theorem 45

LXpx = −γpx.

Finally, as an application of Proposition 41 we have the following conserved
quantity:

EL
px

=
1
2mv2 + mgy + γs

mvx
.

5.3. Parachute equation

Consider the vertical motion of a particle falling in a fluid under the action of
constant gravity. If the friction is modeled by the drag equation, the force is
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proportional to the square of the velocity. This motion can be described as a contact
dynamical system in M = TR × R, with coordinates (y, v, s), by the Lagrangian
function

L =
1
2
mv2 − mg

2γ
(e2γy − 1) + 2γvs,

where γ is a friction coefficient depending on the density of the air, the shape of
the object, etc. Note that this is not a Lagrangian with holonomic dissipation term.
We have

θL = (mv + 2γs)dy,

ηL = ds − θL = ds − (mv + 2γs)dy,

dηL = m dy ∧ dv + 2γ dy ∧ ds,

EL =
1
2
mv2 +

mg

2γ
(e2γy − 1),

RL =
∂

∂s
− 2γ

m

∂

∂v
.

Now, we want to write the contact dynamical equations (14). Writing the vector
field as

X = a
∂

∂s
+ b

∂

∂y
+ c

∂

∂v
∈ X(TR × R),

and using

dEL = mv dv + mg e2γydy,

RL(EL)ηL = −2γv(ds − (mv + 2γs)dy),

we derive the following conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a = (mv + 2γ)b − EL,

b = v,

c = −g e2γy − 2γ

m
a + 2γv2 +

4γ2

m
vs.

The first two imply that a = L. Using this, the third one becomes c = −g + γv2.
Summing up we have that the contact Lagrangian vector field is

ΓL = v
∂

∂y
+ (γv2 − g)

∂

∂v
+ L ∂

∂s
.

Hence, we get the following system of differential equations{
ÿ − γẏ2 + g = 0,

ṡ = L.
(36)
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As in the previous example, the energy dissipation is given by Theorem 38,

LΓLEL = 2γvEL.

Remark 49. Equation (36) describes an object falling (ẏ < 0). To describe an
object ascending it suffices to change γ for −γ in the Lagrangian.

6. Conclusions and Outlook

We have studied the geometric formulation of the Lagrangian and Hamiltonian for-
malisms of dissipative mechanical systems using contact geometry. While contact
Hamiltonian systems are well known, contact Lagrangian systems have been intro-
duced very recently [13, 14]. Within this study, we have given a new expression of
the dynamical equations of a contact Hamiltonian system without the use of the
Reeb vector field. This setting would be especially useful in the case of singular
contact systems, in which we have a pre-contact structure and then Reeb vector
fields are not uniquely determined.

We have reviewed the Lagrangian formalism of contact systems, which takes
place in the bundle TQ × R. The most general framework for this formalism is
established in [14], while in [13] a different formalism is presented and applied to
a particular type of Lagrangians with a dissipation term, which is very common
in physical applications. Both formulations have been compared, studying their
equivalence.

We have analyzed the concept of symmetry for dissipative systems introducing
different kinds of them: for contact Hamiltonian systems in general, those preserv-
ing the dynamics and those preserving the contact structure and the Hamiltonian
function, and, for contact Lagrangian systems, the natural symmetries preserving
the Lagrangian function. The relation among them has been established.

We have introduced the notion of dissipated quantity and, as the most rele-
vant result, we have proved a dissipation theorem, which establishes a relationship
between infinitesimal symmetries and dissipated quantities. This is analogous to the
Noether theorem for conservative systems. We have also proved that the quotient
of two dissipated quantities is a conserved quantity.

Finally, we have also compared the notion of symmetries for symplectic dynam-
ical systems and dissipative contactified systems, showing that the requirements to
be a dynamical symmetry are substantially different.

As some examples we have discussed several common models in physics. We
have proposed contact Lagrangian systems which lead to the standard dynamical
equations for the damped harmonic oscillator, the motion in a gravitational field
with friction, and the parachute motion.

Further research on these topics could include the study of the nonautonomous
case in the Hamiltonian and Lagrangian formalisms, the characterization of equiv-
alent Lagrangians, or to pursue the analysis of the geometric structures in the
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singular case. On the other hand, it would be interesting to develop a geomet-
ric framework for Lagrangian field theories with dissipation, expanding the results
recently obtained in [19].
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