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Practical Introduction to Action-Dependent Field Theories

Manuel de León, Jordi Gaset Rifà,* Miguel C. Muñoz-Lecanda, Xavier Rivas,
and Narciso Román-Roy

Action-dependent field theories are systems where the Lagrangian or
Hamiltonian depends on new variables that encode the action. They model a
larger class of field theories, including non-conservative behavior, while
maintaining a well-defined notion of symmetries and a Noether theorem. This
makes them especially suited for open systems. After a conceptual
introduction, a quick presentation of a new mathematical framework is made
for action-dependent field theory: multicontact geometry. The formalism is
illustrated with a variety of action-dependent Lagrangians, some of which are
regular and others singular, derived from well-known theories whose
Lagrangians have been modified to incorporate action-dependent terms.
Detailed computations are provided, including the constraint algorithm for
the singular cases, in both the Lagrangian and Hamiltonian formalisms.
These are the one-dimensional wave equation, the Klein–Gordon
equation and the telegrapher equation, Maxwell’s electromagnetism,
Metric-affine gravity, the heat equation and Burgers’ equation, the Bosonic
string theory, and (2+ 1)-dimensional gravity and Chern–Simons equation.

1. Introduction

An action-dependent field theory is a system where the La-
grangian or the Hamiltonian depends on new variables that rep-
resent the flow of action. They are a natural generalization of clas-
sical field theories with an array of appealing properties thatmake
them exceptionally interesting.
To beginwith, action-dependent field theories provide terms in

the field equations that cannot be generated with standard classi-
cal field theories, even considering the addition of new particles.
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These terms have been used tomodel dis-
sipative behavior, but their vast potential
goes far beyond. Moreover, the new vari-
ables related to the action create a bridge
between the boundary and the bulk.
In addition, action-dependent field

theories are nonconservative, which
makes them especially suited for open
systems. Remarkably, the conservation
failure is tightly controlled. Noether’s
theorem relates symmetries to dissipated
quantities, which are not conserved but
have a very specific behavior. This is
encoded by a differential 1-form (called
dissipation form) that is easily computed
from the Lagrangian or Hamiltonian,
giving a clear control over the noncon-
servation of the system.
Importantly, action-dependent field

theories are grounded in a rigorous
geometric formulation: multicontact
geometry. A geometric description also

provides the generality to incorporate singular and higher-order
theories, as well as the underlying bracket structure, a prereq-
uisite for quantization. The benefits of such a mathematical ap-
proach are profuse, as evidenced by the successful history of sym-
plectic geometry.

Symplectic Mechanics

Mechanics experienced a drastic change as soon as it was able
to use symplectic geometry in its description. This occurred in
the 50’s and 60’s of the last century, and made it possible to ob-
tain Hamilton’s equations as the integral curves of a vector field
on a symplectic manifold, in fact, in the cotangent bundle of the
configuration space of the system. This implied a liberation from
coordinates and the possibility of obtaining the usual properties
of mechanical systems (conservation of energy, other conserved
quantities, integration,…) in a simple and elegant way. But it was
not only a different way of approaching the study of mechanical
systems, as this formulation served to go further in this task. For
example, the definition of the momentum map made possible
to create a bridge between geometry and dynamics with algebra
and combinatorics through the use of polytopes,[1] obtained as
images of the phase space in the dual of the Lie algebra of the Lie
group of symmetries of the system.
Another subject in which symplectic geometry has been used

to the benefit of mechanics is integration problems, by exploiting
the symmetries of the system in the so-called Meyer–Marsden–
Weinstein Reduction Theorem.[2] Or, for example, the development
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of the Hamilton–Jacobi equation,[3] which has led to a better un-
derstanding of the problem and extensions of the procedure to
more general situations. It has also been possible to study inte-
grability problems and to develop the Liouville–Arnold Theorem,[4]

with the corresponding action-angle coordinates. Other impor-
tant developments achieved through this geometric vision are
the applications to numerical integration (geometric integrators),
the study of Noether’s Theorem and its generalizations develop-
ing the different types of infinitesimal symmetries and the cor-
responding conserved quantities,[5] or the applications to geo-
metric quantization.[6] Another subject that has received a boost
from the geometric description is systems subject to nonholo-
nomic constraints,[7] which have been extensively studied since
the 1980s in this new light. This has made it possible, for exam-
ple, to obtain an appropriate Hamilton–Jacobi equation.
The above items are just some of the milestones that symplec-

tic geometry has achieved in the study of what is now called ge-
ometric mechanics. There are countless references to these re-
sults, that is why we cite a series of books (some of them already
classics) where these developments and the original references
to them can be found.[3,4,8–13]

Contact Mechanics and Dissipation

Recently, interest has grown in the use of contact geometry in the
description of mechanical systems that experience dissipation
phenomena. Although this was known and used in the case of,
for example, thermodynamics, it has now been used in the gen-
eral context, and this geometry has been identified as a partic-
ular case of Jacobi structures. These types of systems are what
in physics and in their Lagrangian version are called action-
dependent Lagrangian systems. The interest in this description
has led to the publication of numerous papers that extend to this
scenario what had already been done in the symplectic case. For
a motivated introduction see refs. [14, 15]. Contact Hamiltonian
systems have been extensible studied[16–19] and the description
of contact Lagrangian systems can be found in ref. [20]. For con-
tact systems with an explicit time dependence, see refs. [21–24].
For the quantization of contact systems, we recommend ref. [25].
Of course, there is a variational description that comes back to
the original papers by Herglotz and generalizes the well-known
Hamilton’s principle.[26,27] Generalities about contact geometry
can be found in refs. [8, 10, 28–30]).
One of the key contributions of both symplectic and contact

geometry is that in both cases a bracket of (observable) functions
is obtained, which in the first case is Poisson, and in the second
Jacobi, the difference being precisely that the Jacobi bracket does
not satisfy Leibniz’s identity (in other words, it is not a derivation
in its arguments but a first-order differential operator). Let us not
forget that the existence of a function bracket is essential for the
quantization process.

Multisymplectic Field Theories

At the end of the 60’s of the last century, something similar
happened in the case of classical field theories. Three groups
of physicist-mathematicians independently developed a formal-

ism called multisymplectic, which sought to extend the symplec-
tic of mechanics to this case.[31–33] The difficulty of this new ge-
ometry is that, while symplectic geometry is very rigid (it is al-
ways locally equivalent to the canonical of a cotangent bundle
via the Darboux Theorem), the situation is very different in the
multisymplectic case. In the last 50 years, much effort has been
made to achieve progress in this direction, and despite many
achievements, a theory as satisfactory as for mechanics has not
yet been achieved, being still a field of research in full develop-
ment. For Lagrangian formalism of classical field theories we re-
fer to refs. [31, 32, 34–40], and for the Hamiltonian formalism,
see refs. [39–50]. These are only some references, since the litera-
ture about this subject is really large. In any case, a brief historical
account on the subject can be found in ref. [51].

Multicontact Field Theories

In the same way that there are mechanical systems with dissipa-
tion, the same occurs in the case of classical field theories. Echo-
ing contact geometry, this leads to action-dependent field theory,
that is, field theories where the Lagrangian or the Hamiltonian
depends on new variables that represent the flow of the action.
This leads to a modification of the field equations. And, again,
there is a geometric structure, called multicontact, that allows us
to obtain these field equations. This has been developed in a re-
cent paper.[52] Let us notice that in ref. [53], Vitagliano introduces
higher codimensional versions of contact manifolds that he calls
“multicontact manifolds”. This notion is different from ours.
As in the contact case, one can derive the field equations from
a variational principle, and we refer to several papers on this
subject[52,54–57] (for a precise and general derivation, including
higher-order, we recommend ref. [56]). We would like also to re-
fer to an alternative (but related) approach for action-dependent
field theories using the so-called k-contact structures.[58–61]

Themulticontact geometry was derived as amathematical gen-
eralization of other approaches, motivated by the capacity to for-
malize phenomenology outside the scope of the usualHamilton’s
principle. So far, there are only a handful of examples developed
with any detail. This paper aims to provide an easy introduction
to action-dependent field theories and the main associated geo-
metric tools. We lay out the field equations for regular systems,
and provide an explicit guide for themulticontact formalism. The
method is showcased with a diverse list of fully worked-out ex-
amples. We hope this paper will facilitate the work of those in-
terested in action-dependent field theory and the new geometric
objects underlying it.

Structure of the Paper

The paper is structured as follows. In Section 2 we introduce the
so-called action-dependent field theories, and in Section 3, we
develop the Lagrangian and Hamiltonian formalism for these
theories, making use of the multicontact geometry. The rest of
the paper is devoted to applying the above framework to particu-
lar field theories. In Section 4 we consider general Lagrangians
that are quadratic (regular and singular) and affine, and that
include terms depending on “action variables”. In Section 5,
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a number of particular cases are discussed: one-dimensional
wave equation with first-order terms and external force, Klein–
Gordon equation and the telegrapher equation, Metric-affine
gravity,Maxwell’s electromagnetism, and Burgers’ equation from
the heat equation; all of them including terms depending on “ac-
tion variables”. Finally, we enumerate some relevant topics for
further investigation. Two additional simple examples, Bosonic
string theory and (2 + 1)-dimensional gravity and Chern–Simons
equation, are added in a first Appendix A. To keep the paper self-
contained, we include a second Appendix B on premulticontact
andmulticontact structures that is not necessary to follow the rest
of the paper but may be useful to the reader.

Some General Conventions and Notation

All the manifolds are real, second-countable and of class 𝒞∞,
and the mappings are assumed to be smooth. Sum over crossed
repeated indices is understood. The signature of the space-time
metric that has been taken is (− + ++).
A brief summary of conventional notation is the following:

• 𝒞∞(): Smooth functions in a manifold.
• Ωk(): Module of differential forms of degree k in a manifold

.
• 𝖷(): Module of vector fields in a manifold.
• 𝖷m(): Module of m-multivector fields in a manifold.
• 𝜄 (X )Ω: Natural contraction of a vector field X ∈ 𝖷() and a
k-form Ω ∈ Ωk().

• J1𝜋: 1-jet bundle over a bundle 𝜋 : E → M. Coordinates:
(x𝜇 , ya, ya

𝜇
), 0 ≤ 𝜇 ≤ m − 1, 1 ≤ a ≤ n.

• J1∗𝜋: “Dual” jet bundle. Coordinates: (x𝜇 , ya, p𝜇a ).
• Λm−1(T∗): Bundle of (m − 1)-differential forms on a mani-
fold (multicotangent bundle).

• d: Exterior differential of differential forms.
• ∧: Exterior product of differential forms or vector fields.
• dmx ≡ dx0 ∧⋯ ∧ dxm−1: Coordinate expression of a volume
form.

• dm−1x𝜇 = 𝜄
(

𝜕

𝜕x𝜇

)
dmx ≡ (−1)𝜇dx0 ∧⋯ ∧ dx𝜇−1 ∧ dx𝜇+1 ∧⋯ ∧

dxm−1.
• 𝜕𝜇 = 𝜕

𝜕x𝜇
.

2. Action-Dependent Field Theories

In this preliminary section, we discuss the main features of the
so-called action-dependent classical field theories.

2.1. General Aspects

An action-dependent first-order field theory is a system where the
Lagrangian or the Hamiltonian functions depend on the action
in an implicit way. Since the action is not a local operator, we
consider a localized version of the action, given by an (m − 1)-
form S over space-time. It is related to the action in the following
way: in classical field theories, the action of a field y(x) = (ya(x))
is an integral over a domain in space-time, D ⊂ M,

(y(x)) = ∫D
L(y(x))dmx . (1)

The action  is not local in the sense that it depends on the do-
main D. The density of action is the Lagrangian density L dmx.
Evaluated on a field, L(y(x))dmx is an m-form over space-time
and, therefore, it is a closed form. Locally, we can consider a form
whose differential is the Lagrangian density, which is the (m − 1)-
form represented by S = s𝜇(x𝜈)dm−1x𝜇 ,

dS = d
(
s𝜇dm−1x𝜇

)
= 𝜕s𝜇

𝜕x𝜇
dmx = L(y(x))dmx . (2)

Therefore, S plays the role of the potential of the density of action.
The value of S depends on the field y(x); hence, the components
s𝜇 are new fields; that is, fiber coordinates to be determined as
functions of (x𝜇).
To be more precise, an action-dependent field theory is a sys-

tem where the Lagrangian or Hamiltonian depends on the com-
ponents s𝜇 of a (m − 1) form over space-time, with the relation
(2). This leads to an implicit variational principle calledHerglotz’s
variational principle.[56,57] A pair (y(x), s(x)) ≡ (ya(x), s𝜇(x)) is a so-
lution to the Herglotz variational principle if they are critical for
the action

(y(x), s(x)) = ∫D
L(x𝜇, ya, 𝜕𝜇y

a, s𝜇)dmx , (3)

under the constraint

𝜕s𝜇

𝜕x𝜇
= L(x𝜇, ya, 𝜕𝜇y

a, s𝜇) . (4)

To solve this principle one should first solve (4) for the unknowns
(ya(x), s𝜇(x)), if possible, or consider (4) as a nonholonomic con-
straint, which establishes nontrivial restrictions on the possible
variations. Formore details onHerglotz’s variational principle for
fields, see ref. [56].
The constraint (4) is crucial for the theory because it is the

difference between Hamilton’s and Herglotz’s variational prin-
ciples. Due to it, the s𝜇 variables generate the action; a property
that differentiates them from other fields. Explicitly, as a conse-
quence of the constraint (4) we can write the action as,

(y(x), s(x)) = ∫D
L(x𝜇, ya, 𝜕𝜇y

a, s𝜇)dmx = ∫𝜕D
s𝜇dm−1x𝜇 . (5)

Namely, given a solution (ya(x), s𝜇(x)), the integral of the (m − 1)-
form s𝜇dm−1x𝜇 over the boundary of the domain is actually the
value of the action on that solution. The unique character of the
s𝜇 variables is reflected in its particular geometric description
and are sometimes called “action variables”. This relation sug-
gests that the frontier could play a more relevant role in action-
dependent field theories, although this is a feature that has not
been explored so far.

2.2. Lagrangian Formalism

Given a Lagrangian L(x𝜇 , ya, ya
𝜇
, s𝜇), the functions (ya(x), s𝜇(x)) are

a solution to the Herglotz variational principle for fields if, and
only if,

𝜕L
𝜕ya

− d
dx𝜇

𝜕L
𝜕ya

𝜇

+ 𝜕L
𝜕s𝜇

𝜕L
𝜕ya

𝜇

= 0 , 𝜕s𝜇

𝜕x𝜇
= L . (6)
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These are the Herglotz–Euler–Lagrange equations[57,59] (see also
Section 3.2). The first group of Equations (6) are the usual Euler–
Lagrange equations with two extra terms: 𝜕L

𝜕s𝜇
𝜕L
𝜕ya𝜇
, which is a term

proportional to the momenta, and 𝜕2L
𝜕s𝜈ya𝜇

𝜕s𝜈

𝜕x𝜇
, from the total deriva-

tive with respect to x𝜇 . Notice that the above equations are not lin-
ear on the Lagrangian, as in the standard Euler–Lagrange equa-
tions. Thus, any new term added to the Lagrangian could interact
with all the other ones. The last equation of (6) is the constraint
(4).
In most applications so far considered, the action-dependent

Lagrangian density is the standard one of the system of inter-
est, L0 d

mx, plus a term linear on the s𝜇 of the form 𝜆𝜇(x
𝜈)s𝜇dmx.

Therefore, L dmx = (L0 + 𝜆𝜇s
𝜇)dmx. In these cases, we have that,

𝜕L
𝜕s𝜇

𝜕L
𝜕ya

𝜇

= 𝜆𝜇
𝜕L
𝜕ya

𝜇

, 𝜕2L
𝜕s𝜈ya

𝜇

𝜕s𝜈

𝜕x𝜇
= 0 , (7)

that is, a linear term on the momenta, 𝜕L
𝜕ya𝜇
, has been added to the

equations. For Lagrangians with kinetic energy, this is generally a
term linear in velocities, which is related to dissipative phenom-
ena.
A more general dependence of the Lagrangian on the action

usually leads to nonlinear terms of this kind in the field equa-
tions (for instance, see Section 5.5 for a nonlinear example).

2.3. Hamiltonian Formalism

There are two main approaches to Hamiltonian field theory:
the space-time split formalism on an infinite-dimensional phase
space,[62] and the covariant formalism, also known as the De
Donder–Weyl theory.[63,64] The last one has been developed for
action-dependent field theories using k-contact and multicontact
geometries.[52,58–60] We now motivate the Herglotz–Hamilton–De
Donder–Weyl equations from the Lagrangian Equations (6) with
a simplemanipulation in coordinates. The reader can find amore
detailed derivation in Section 3 and in refs. [52, 58].
In the covariant approach, all the space-time coordinates are

considered on the same footing. Therefore, we have momenta in
each of the space-time coordinates, which are defined as:

p𝜇a = 𝜕L
𝜕ya

𝜇

. (8)

The quantities p𝜇a are usually called themultimomenta. We can ex-
press the velocities in terms of the multimomenta as long as the
matrix

(
𝜕2L

𝜕ya𝜇𝜕y
b
𝜈

)
is regular. In this case, we say that the Lagrangian

is regular, and we can define the Hamiltonian as:

H(x𝜇, ya, p𝜇a , s
𝜇)

= ya
𝜇
(x𝜇, ya, p𝜇a , s

𝜇)p𝜇a − L(x𝜇, ya, ya
𝜇
(x𝜇 , ya, p𝜇a , s

𝜇), s𝜇) , (9)

and, by direct calculation, we derive that,

ya
𝜇
= 𝜕H

𝜕p𝜇a
. (10)

From the above definition ofH we obtain,

L(x𝜇, ya, ya
𝜇
, s𝜇)

= ya
𝜇
p𝜇a (x

𝜇 , ya, ya
𝜇
, s𝜇) −H(x𝜇 , ya, p𝜇a (x

𝜇 , ya, ya
𝜇
, s𝜇), s𝜇) . (11)

Using these transformations we can see that the Equations 6 are
equivalent to

𝜕p𝜇a
𝜕x𝜇

= −𝜕H
𝜕ya

− p𝜇a
𝜕H
𝜕s𝜇

, (12)

𝜕s𝜇

𝜕x𝜇
= 𝜕H

𝜕p𝜇a
p𝜇a −H . (13)

These equations, together with (10), are the Herglotz–Hamilton–
de Donder-Weyl equations for action-dependent field theories. One
can consider these equations for an arbitrary Hamiltonian, even
if it does not arise from a Lagrangian.
Most of the relevant field theories, like Einsteins’ equa-

tions and Yang–Mills, are described by singular Lagrangian
functions. In that case, one cannot find a one-to-one corre-
spondence between velocities and multimomenta. Moreover, the
equations are usually not compatible in the full space and con-
straints appear. To solve these problems, the geometric approach
to field theories, in this case premulticontact geometry, gives us
a method to obtain the set where solutions exist and which equa-
tions they actually satisfy. This procedure is explained in Sec-
tion 3.2 for Lagrangian systems and in 3.4 for the Hamiltonian
counterpart. We will see some examples in the second part of
the paper.
The space-time split formalism considers the evolution of a

field with respect to only one coordinate, usually time. This ap-
proach is preferred when quantizing field theories. Moreover,
it is more natural to incorporate boundary conditions for the
field equations, using the Cartan formalism in the space of
Cauchy data.[38,51,65] Furthermore, this formulation of the prob-
lem has been useful to numerically simulate solutions of the
equations.[66,67] This approach benefits from a different con-
straint algorithm (see ref. [68] for a complete algorithm includ-
ing functional independence). Nevertheless, to our knowledge,
the space-time split formalism for action-dependent field theo-
ries has not been developed.

2.4. Properties of Action-Dependent Field Theories

Nonconservation and symmetries: A relevant feature of action-
dependent field theories is that they are nonconservative in the
following sense: a conserved quantity in field theories is a (m −
1)-form 𝜉𝜇(x𝜈) dm−1x𝜇 such that, on a solution, 𝜕𝜉𝜇

𝜕x𝜇
= 0 (see, for

instance, refs. [38, 44, 69–74]). In integral form, this translates to
the conservation of flow through the boundary of a closed region.
In action-dependent field theories, we have dissipated quantities,
which are governed by the following relation, which holds on any
solution:

𝜕𝜉𝜇

𝜕x𝜇
= −𝜕H

𝜕s𝜇
𝜉𝜇 , (14)
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in the Hamiltonian formalism. In the Lagrangian formalism it
is:

𝜕𝜉𝜇

𝜕x𝜇
= 𝜕L

𝜕s𝜇
𝜉𝜇 . (15)

This relation is called the dissipation law.[59] Despite its name, it
does not always describe a decrease of an observable, but a non-
conservative behavior in a particular way. The name originates
from the use of contact geometry to study friction in mechan-
ical systems. All the dissipated quantities of a system have the
same dissipation law, which is given by the Hamiltonian (or the
Lagrangian).
The dissipation law (14) (or (15)) has a rich behavior in field

theories, far beyond dissipation. For instance, in Electromag-
netism only a particular selection of covectors (𝜆𝜇) lead to a clear
dissipation of energy.[75] Meanwhile, one can construct cosmo-
logical models with an action-dependent Lagrangian where the
energy-momentum tensor is conserved.[76]

The notions of symmetries and a Noether theorem exist for
action-dependent field theories, that is, a way to construct a dis-
sipated quantity from a symmetry.[58,59,77] Nevertheless, the topic
is far less developed than in contact mechanical systems.[20,24]

New terms in the equations: Another relevant reason to study
action-dependent field theories is their capacity to model a larger
pool of PDE’s. It is clear that the Herglotz–Euler–Lagrange Equa-
tions 6 contain more terms than the Euler–Lagrange equations,
but the question remains if those terms could be recovered with
a different Lagrangian without invoking action terms. This is a
challenging question because it is closely related to the inverse
problem, a classical problem only solved in particular cases[78] (see
ref. [79] for recent advances in contact mechanics). Nevertheless,
several results indicate that action-dependent Lagrangians, and
the corresponding contact andmulticontact geometry, are the ad-
equate description for these systems.
As a first approach, consider the quadratic Lagrangian of a

scalar field y with a linear dependence on the action (see 4.1 for
a more general case)

L = 1
2
f 𝜇𝜈y𝜇y𝜈 − V(y) − 𝜆𝜇(x

𝜌)s𝜇 . (16)

The corresponding Herglotz–Euler–Lagrange equations are

𝜕V
𝜕y

+ f 𝜇𝜈y𝜇𝜈 = −𝜆𝜈 f 𝜇𝜈y𝜇 . (17)

Assuming f 𝜇𝜈 is a regular metric, the right-hand side is a generic
linear term in velocities. This term can be partially recovered
without the action-dependent term by considering a space-time-
depending global factor:

Lb = b(x𝜌)
[1
2
f 𝜇𝜈y𝜇y𝜈 − V(y)

]
. (18)

The resulting equations are

b
[
𝜕V
𝜕y

+ f 𝜇𝜈y𝜇𝜈

]
= − 𝜕b

𝜕x𝜈
f 𝜇𝜈y𝜇 . (19)

We recover the same equations if, and only if, d ln b = 𝜆𝜇dx
𝜇,

which is only possible if 𝜆𝜇dx
𝜇 is a closed form. In other words,

not all terms linear in velocities can be recovered by a global fac-
tor.
The problem of the particularity of action-dependent La-

grangians has been studied in more generality in contact me-
chanical systems. The dynamics of a contact mechanical system
is of Reeb type (instead of symplectic) outside the set where the
energy vanishes.[18] In some cases, is it possible to recast the con-
tact dynamics as a subset of a symplectic system, although there
are obstructions for a general result.[80,81] In summary, the dy-
namics of an action-dependent mechanical system are associated
with contact geometry, which is, in general, qualitatively different
from symplectic geometry.
There are a lot of topics to explore, but one should advance with

care because our intuition about the standard classical field theo-
ries does not always translate to action-dependent field theories.
To begin with, the equations are not linear in the Lagrangian. An-
other important case is that of equivalent Lagrangians: if we add
a total derivative to an action-dependent Lagrangian, we do not
obtain the same equations. To construct equivalent Lagrangians
one usually needs to also perform a change of variables in the s𝜇

coordinates. This topic has been studied for mechanical systems
in ref. [79]. A notorious example in field theories is General Rel-
ativity, where different equivalent Lagrangians lead to different
dynamics when an action-dependent term is added[55,76] (see also
example 5.4).

3. Lagrangian and Hamiltonian Formalisms for
Action-Dependent Field Theories

This section is devoted to reviewing the main features of the
multicontact formulation for action-dependent field theories in-
troduced in ref. [52]. For this, it is necessary to make a mini-
mal presentation of the inherent geometric structures; although
our attention will be focused on obtaining and discussing the
field equations. As this framework is used in the following sec-
tions to describe both regular and singular field theories, both
cases are explained.

3.1. Multivector Fields

For details on multivector fields see, for instance, refs. [37, 82,
83]. Let  be a manifold with dim = n. The m-multivector
fields or multivector fields of order m on  are the contravari-
ant skew-symmetric tensor fields of order m in . The set of
m-multivector fields in is denoted 𝖷m(). A multivector field
X ∈ 𝖷m() is locally decomposable if, for every point p ∈ ,
there exists an open neighborhood Up ⊂  such that

X|Up
= X0 ∧⋯ ∧ Xm−1 , for some X0,… , Xm−1 ∈ 𝖷(Up) . (20)

The contraction of a locally decomposable multivector field X ∈
𝖷m() and a differentiable form Ω ∈ Ωk() is the natural con-
traction between contravariant and covariant tensor fields; i.e.,
𝜄 (X) Ω|Up

= 0, if k < m, and

𝜄(X)Ω|Up
= 𝜄

(
X0 ∧⋯ ∧ Xm−1

)
Ω

= 𝜄
(
Xm−1

)
⋯ 𝜄

(
X0

)
Ω , if k ≥ m . (21)
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Let 𝜅 :  → M be a fiber bundle with dimM = m and
dim = N +m, and denote (x𝜇 , za) the local coordinates on;
where x𝜇 are coordinates on the baseM and za are coordinates on
the fibers (with 0 ≤ 𝜇 ≤ m − 1 and 1 ≤ I ≤ N). Amultivector field
X ∈ 𝖷m() is 𝜅-transverse if 𝜄 (𝔛) (𝜅∗𝛽)|p ≠ 0, for every p ∈ 
and 𝛽 ∈ Ωm(). The local expression for a locally decomposable
𝜅-transverse multivector field X ∈ 𝖷m() is

X =
m−1⋀
𝜇=0

X𝜇 = f
m−1⋀
𝜇=0

(
𝜕

𝜕x𝜇
+ Fa

𝜇

𝜕

𝜕za

)
, where f ∈ 𝒞∞() . (22)

If M is an orientable manifold with volume form 𝜔 ∈ Ωm(),
then the condition for X ∈ 𝔛m() to be 𝜅-transverse can be ex-
pressed as 𝜄 (X) (𝜅∗𝜔) ≠ 0. This condition can be fixed by taking
𝜄 (X) (𝜅∗𝜔) = 1, which implies f = 1 in (22).
If X ∈ 𝖷m() is a locally decomposable and 𝜅-transverse mul-

tivector field and 𝜓 : U ⊂ M →  is a local section of 𝜅, with lo-
cal expression 𝜓(x𝜇) = (x𝜇 , za(x𝜈)); then 𝜓 is an integral section
of X if 𝜕za

𝜕x𝜇
= Fa

𝜇
. Then, X is integrable if, for p ∈ , there exist

x ∈ M and an integral section, 𝜓 : Ux ⊂ M → , of X such that
p = 𝜓(x).

3.2. Multicontact Lagrangian Formalism

In the multisymplectic formulation of conservative classical field
theories,[31,32,34–39,84] a first-order Lagrangian field theory is de-
scribed by the following elements. First we have the configuration
bundle 𝜋 : E → M, where dimM = m and dimE = n +m, andM
is an orientable manifold with volume form 𝜔 ∈ Ωm(M), which
usually represents space-time. Then, the theory is developed on
the first-order jet bundle J1𝜋 → E → M, with dim J1𝜋 = nm +
n +m. Natural coordinates in J1𝜋 adapted to the bundle structure
are denoted by (x𝜇, ya, ya

𝜇
) (𝜇 = 0,… , m − 1 and a = 1,… , n), and

are such that 𝜔 = dx0 ∧⋯ ∧ dxm−1 ≡ dmx.
For the Lagrangian formulation of nonconservative (or action-

dependent) first-order field theories (see ref. [52]), consider the
bundle,

 = J1𝜋 ×M Λm−1(T∗M) , (23)

where Λm−1(T∗M) denotes the bundle of (m − 1)-forms on M.
This bundle can be identified with J1𝜋 ×ℝm, and so we shall do
henceforth. We denote by 𝜏 :  → M the bundle projection. Nat-
ural coordinates in are (x𝜇, ya, ya

𝜇
, s𝜇), and so dim  = 2m + n +

nm.

Now, a Lagrangian density is introduced on  as am-form ∈
Ωm(), whose expression is
(x𝜇 , ya, ya

𝜇
, s𝜇) = L(x𝜇, ya, ya

𝜇
, s𝜇) dmx , (24)

where L ∈ 𝒞∞() is the Lagrangian function associated with .
Then, the Lagrangian m-form associated with  on  is

Θ = − 𝜕L
𝜕ya

𝜇

dya ∧ dm−1x𝜇 +

(
𝜕L
𝜕ya

𝜇

ya
𝜇
− L

)
dmx + ds𝜇 ∧ dm−1x𝜇 .

(25)

The local function E = 𝜕L
𝜕ya𝜇

ya
𝜇
− L is called the energy Lagrangian

function associated with L.
A Lagrangian function L ∈ 𝒞∞() is regular if the Hessian

matrix

(W𝜇𝜈

ab ) =

(
𝜕2L

𝜕ya
𝜇
𝜕yb

𝜈

)
(26)

is regular everywhere; then Θ is a variational multicontact form
on  and the triple ( ,Θ,𝜔) is called amulticontact Lagrangian
system (see Appendix B for a quick review of multicontact and
premulticontact structures and their terminology). Otherwise, L
is a singular Lagrangian.

Remark 3.1. It is important to note that, given a singular La-
grangian, the associated Lagrangian form Θ is not always a pre-
multicontact form on  . Consider, for instance, the example given
by the singular Lagrangian L =

∑n
a=1 y

a
𝜇
s𝜇 which yields a struc-

ture (Θ,𝜔) which has no Reeb distribution associated with it,
and then it is neither a multicontact, nor a premulticontact struc-
ture (see Appendix B and ref. [52] for details on these definitions
and results). Nevertheless, in this paper we only consider singu-
lar Lagrangians for whichΘ𝔏 is a premulticontact form, and then
the triple ( ,Θ𝔏,𝜔) will be called a premulticontact Lagrangian
system.

To set the field equations for action-dependent field theories in
an intrinsic way, we need first to introduce the so-called dissipa-
tion form whose expression in coordinates is

𝜎Θ = − 𝜕L
𝜕s𝜇

dx𝜇 . (27)

Then we define the Lagrangian (m + 1)-form

Ω = dΘ + 𝜎Θ ∧ Θ = dΘ − 𝜕L
𝜕s𝜈

dx𝜈 ∧ Θ

= d

(
− 𝜕L
𝜕ya

𝜇

dya ∧ dm−1x𝜇 +

(
𝜕L
𝜕ya

𝜇

ya
𝜇
− L

)
dmx

)

−

(
𝜕L
𝜕s𝜇

𝜕L
𝜕ya

𝜇

dya − 𝜕L
𝜕s𝜇

ds𝜇
)

∧ dmx . (28)
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 15213978, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.70000 by U

niversidad A
utonom

a D
e M

adrid, W
iley O

nline L
ibrary on [26/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

Now, a section 𝝍 : M →  of the projection 𝜏 is said to be a
holonomic section on  if it is locally expressed as

𝝍 (x𝜇) =
(
x𝜇 , ya(x𝜈),

𝜕ya

𝜕x𝜇
(x𝜈), s𝜇(x𝜈)

)
. (29)

Then X ∈ 𝖷m() is a holonomic m-multivector field on  if it is
𝜏-transverse, integrable, and its integral sections are holonomic
on  . The local expression of a holonomicm-multivector field on
 verifying the condition 𝜄 (X)𝜔 = 1 is

X =
m−1⋀
𝜇=0

(
𝜕

𝜕x𝜇
+ ya

𝜇

𝜕

𝜕ya
+ Fa

𝜇𝜈

𝜕

𝜕ya
𝜈

+ g𝜈
𝜇

𝜕

𝜕s𝜈

)
,

where Fa
𝜇𝜈
, g𝜈

𝜇
∈ 𝒞∞() . (30)

Holonomic multivector fields are also called sopdes because the
equations of their integral sections are the solutions to a system
of second-order partial differential equations of the form

ya
𝜇
=

𝜕ya

𝜕x𝜇
, Fa

𝜇𝜈
=

𝜕2ya

𝜕x𝜇𝜕x𝜈
. (31)

Multivector fields on  which have the local expression (30), but
are not integrable, are usually called semiholonomic.
Bearing all this in mind, for a (pre)multicontact Lagrangian

system ( ,Θ,𝜔) the Lagrangian field equations can be derived
from a variational principle which is called the generalized Her-
glotz Principle and they can be stated alternatively as:

(1) The (pre)multicontact Lagrangian equations for holonomic sec-
tions, 𝝍 : M →  , which are
𝝍

∗Θ = 0 , 𝝍
∗𝜄(Y)Ω = 0 , for every Y ∈ 𝔛() . (32)

(2) The (pre)multicontact Lagrangian equations for 𝜏-transverse
and locally decomposable multivector fields X ∈ 𝖷m() which
are

𝜄
(
X

)
Θ = 0 , 𝜄

(
X

)
Ω = 0 , (33)

and the condition of 𝜏-transversality can be imposed by ask-
ing that 𝜄

(
X

)
𝜔 = 1. A 𝜏-transverse and locally decomposable

m-multivector field solution to these equations is called a La-
grangian multivector field.
In a natural chart of coordinates of , a 𝜏-transverse and locally

decomposablem-multivector field X ∈ 𝖷m() verifying the con-
dition 𝜄 (X) 𝜔 = 1 is given by

X =
m−1⋀
𝜇=0

(
𝜕

𝜕x𝜇
+ (X)a𝜇

𝜕

𝜕ya
+ (X)a𝜇𝜈

𝜕

𝜕ya
𝜈

+ (X)𝜈𝜇
𝜕

𝜕s𝜈

)
. (34)

Taking into account (25) and (28), we have that Equations (33)
lead to

0 = L + 𝜕L
𝜕ya

𝜇

(
(X)a𝜇 − ya

𝜇

)
− (X)𝜇𝜇 , (35)

0 =
(
(X)b𝜇 − yb

𝜇

)
𝜕2L

𝜕yb
𝜇
𝜕s𝜈

, (36)

0 =
(
(X)b𝜇 − yb

𝜇

)
𝜕2L

𝜕yb
𝜇
𝜕x𝜈

, (37)

0 =
(
(X)b𝜇 − yb

𝜇

)
𝜕2L

𝜕ya
𝜈
𝜕yb

𝜇

, (38)

0 =
(
(X)b𝜇 − yb

𝜇

)
𝜕2L

𝜕ya𝜕yb
𝜇

+ 𝜕L
𝜕ya

− 𝜕2L
𝜕x𝜇𝜕ya

𝜇

− 𝜕2L
𝜕s𝜈𝜕ya

𝜇

(X)𝜈𝜇 (39)

− 𝜕2L
𝜕yb𝜕ya𝜇

(X)b𝜇 −
𝜕2L

𝜕yb
𝜈
𝜕ya

𝜇

(X)b𝜇𝜈 +
𝜕L
𝜕s𝜇

𝜕L
𝜕ya

𝜇

,

and a last group of equations which are identities when they are
combined with the above ones.
If X is a semiholonomic solution to (33), then

ya
𝜇
= (X)a𝜇 , (40)

and Equations (36), (37), and (38) hold identically, and (35) and
(39) give

(X)𝜇𝜇 = L , (41)

𝜕L
𝜕ya

− 𝜕2L
𝜕x𝜇𝜕ya

𝜇

− 𝜕2L
𝜕yb𝜕ya

𝜇

yb
𝜇
− 𝜕2L

𝜕s𝜈𝜕ya
𝜇

(X)𝜈𝜇

− 𝜕2L
𝜕yb

𝜈
𝜕ya

𝜇

(X)b𝜇𝜈 = − 𝜕L
𝜕s𝜇

𝜕L
𝜕ya

𝜇

. (42)

Furthermore, if these semiholonomic multivector fields X are
integrable then, for their holonomic integral sections

𝝍 (x𝜈) =
(
x𝜇 , ya(x𝜈),

𝜕ya

𝜕x𝜇
(x𝜈), s𝜇(x𝜈)

)
, (43)

Equations (41) and (42) transform into

𝜕s𝜇

𝜕x𝜇
= L◦𝝍 , (44)

𝜕

𝜕x𝜇

(
𝜕L
𝜕ya

𝜇

◦𝝍

)
=

(
𝜕L
𝜕ya

+ 𝜕L
𝜕s𝜇

𝜕L
𝜕ya

𝜇

)
◦𝝍 , (45)

which are precisely the coordinate expression of the Lagrangian
Equations (32) for holonomic sections. Thus, Equations (33) and
(32) are equivalent in this way. In particular, (45) are the so-called
Herglotz–Euler–Lagrange field equations.
In the case that L is a regular Lagrangian, Equations (38) lead

to the condition of semiholonomy (40), since the Hessian matrix(
𝜕2L

𝜕yb𝜈𝜕y
a
𝜇

)
is regular. Therefore, Equations (42) always have solution

for the components (X)b𝜇𝜈 of X (although the system is unde-
termined, unless m = 1).
Thus, we have proved that:

Theorem 3.2. Let ( ,Θ,𝜔) be amulticontact Lagrangian system. If
X is a semiholonomic and integrable solution to the Equations (33)
(that is, a sopde), its integral sections are the solutions to the multi-
contact Euler–Lagrange field equations for holonomic sections (32).
These sopdes are called the Euler–Lagrange multivector fields associ-
ated with .

Fortschr. Phys. 2025, 73, e70000 © 2025 Wiley-VCH GmbHe70000 (7 of 25)

 15213978, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.70000 by U

niversidad A
utonom

a D
e M

adrid, W
iley O

nline L
ibrary on [26/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

In addition, if the Lagrangian system is regular then:

(1) The multicontact Lagrangian field equations for multivector
fields (53) have solutions on  . The solutions are not unique
if m > 1.

(2) The Lagrangian m-multivector fields X solution to Equa-
tions (53) are semiholonomic.

When L is not regular and assuming that ( ,Θ,𝜔) is a pre-
multicontact system, in general, the Equations (42) have no solu-
tions everywhere on  , since the compatibility of the system (42)
depends on the rank of the Hessian matrix

(
𝜕2L

𝜕yb𝜈𝜕y
a
𝜇

)
. In the most

favorable cases, these field equations are compatible only on a
submanifold of  which is obtained by applying a suitable con-
straint algorithm. In any case, solutions to Equations (33) are not
necessarily sopdes and, as a consequence, if they are integrable,
their integral sections are not necessarily holonomic; so this re-
quirement must be imposed as an additional condition. Hence,
the final objective is to find the maximal submanifold f of 
where there are Euler–Lagrange multivector fields X which are
solutions to the premulticontact Lagrangian field equations onf
and are tangent to f ; that is to say, where consistent solutions
exist. This procedure is explained in some of the applications de-
veloped in Sections 4 and 5.

3.3. Multicontact Hamiltonian Formalism: The (hyper)regular
Case

For the Hamiltonian formulation of nonconservative (or action-
dependent) first-order field theories, first consider the so-called
restricted multimomentum bundle J1∗𝜋, whose natural coordinates
are (x𝜇, ya, p𝜇a ) such that𝜔 = dmx, and so dim J1∗𝜋 = n +m + nm.
(This is the bundle where the Hamiltonian multisymplectic for-
malism of conservative field theories takes place[39,41–48,50].) Then,
consider the manifold

∗ = J1∗𝜋 ×M Λm−1(T∗M) , (46)

which has natural coordinates (x𝜇, ya, p𝜇a , s𝜇). This bundle is iden-
tifiedwith J1∗𝜋 ×ℝm, and so we shall do henceforth. It is a bundle
overM with projection 𝜏 : ∗ → M.

Let ( ,Θ,𝜔) be a Lagrangian system, with  = L𝜔. The Leg-
endre map associated with the Lagrangian function L ∈ 𝒞∞()
is the map  :  → ∗ locally given by

∗x𝜈 = x𝜈 , ∗ya = ya, ∗p𝜈a =
𝜕L
𝜕ya

𝜈

,  ∗s𝜇 = s𝜇. (47)

The Lagrangian L is regular if, and only if, is a local diffeomor-
phism, and L is said to be hyperregular when  is a global dif-
feomorphism.
Next, we consider the hyperregular case (the regular case is the

same but changing  and ∗ by the corresponding open sets). In
this case () = ∗. Then, the multicontact form Θ ∈ Ωm()
can be projected by  to an m-form in ∗ and then there exists
the Hamiltonian m-form Θ ∈ Ωm(∗) such that Θ = ∗Θ ,
whose local expression is

Θ = −p𝜇ady
a ∧ dm−1x𝜇 +H dmx + ds𝜇 ∧ dm−1x𝜇 . (48)

HereH ∈ 𝒞∞(∗) is theHamiltonian function, which is obtained
as H = (−1)∗E; that is, its local expression is given by

H = p𝜇a (−1)∗ya
𝜇
− (−1)∗L . (49)

Then, Θ is a variational multicontact form and hence
(∗,Θ ,𝜔) is called themulticontact Hamiltonian system associ-
ated with the multicontact Lagrangian systems ( ,Θ,𝜔). In this
formalism, the dissipation form is expressed as

𝜎 = 𝜕H
𝜕s𝜇

dx𝜇 , (50)

and we can define theHamiltonian (m + 1)-form

Ω = dΘ + 𝜎 ∧ Θ = dΘ + 𝜕H
𝜕s𝜇

dx𝜇 ∧ Θ

= d(−p𝜇ady
a ∧ dm−1x𝜇 +H dmx)

+
(
𝜕H
𝜕s𝜇

p𝜇a dy
a − 𝜕H

𝜕s𝜇
ds𝜇

)
∧ dmx ; (51)

which verifies that Ω = ∗Ω .
For this multicontact Hamiltonian system, the field equations

can be stated alternatively as:

(1) The multicontact Hamilton–de Donder–Weyl equations for
sections𝝍 : M → ∗ are

𝝍
∗Θ = 0 , 𝝍

∗𝜄(Y)Ω = 0 , for every Y ∈ 𝖷(∗) . (52)

(2) The multicontact Hamilton–de Donder–Weyl equations for 𝜏-
transverse and locally decomposable multivector fields X ∈
𝖷m(∗) are

𝜄
(
X

)
Θ = 0 , 𝜄

(
X

)
Ω = 0 , (53)

and the condition of 𝜏-transversality can be imposed by ask-
ing that 𝜄

(
X

)
𝜔 = 1.

In natural coordinates, if

X =
m−1⋀
𝜇=0

(
𝜕

𝜕x𝜇
+ (X )a𝜇

𝜕

𝜕ya
+ (X )𝜈𝜇a

𝜕

𝜕p𝜈a
+ (X )𝜈𝜇

𝜕

𝜕s𝜈

)
(54)

is the expression of the 𝜏-transverse and locally decomposable
multivector field X ∈ 𝖷m(∗), and they are solutions to Equa-
tions (53), taking into account the local expressions (48) and (51),

Fortschr. Phys. 2025, 73, e70000 © 2025 Wiley-VCH GmbHe70000 (8 of 25)
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these field equations lead to

(X )𝜇𝜇 = p𝜇a
𝜕H
𝜕p𝜇a

−H , (X )a𝜇 = 𝜕H
𝜕p𝜇a

,

(X )𝜇𝜇a = −
(
𝜕H
𝜕ya

+ p𝜇a
𝜕H
𝜕s𝜇

)
, (55)

together with a last group of equations which are identities when
the above ones are taken into account. If X are integrable, then
their integral sections 𝝍 (x𝜈) = (x𝜇 , ya(x𝜈), p𝜇a (x𝜈), s𝜇(x𝜈)) are the
solutions to the Equations (52) which read as

𝜕s𝜇

𝜕x𝜇
=
(
p𝜇a

𝜕H
𝜕p𝜇a

−H
)
◦𝝍 ,

𝜕ya

𝜕x𝜇
= 𝜕H

𝜕p𝜇a
◦𝝍 ,

𝜕p𝜇a
𝜕x𝜇

= −
(
𝜕H
𝜕ya

+ p𝜇a
𝜕H
𝜕s𝜇

)
◦𝝍 . (56)

These are the Herglotz–Hamilton–de Donder–Weyl equations for
action-dependent field theories. These equations are compatible
in ∗.
As  is a diffeomorphism, the solutions to the Lagrangian

field equations for ( ,Θ,𝜔) are in one-to-one correspondence
to those of the Hamilton–de Donder–Weyl field equations for
(∗,Θ ,𝜔).

3.4. Multicontact Hamiltonian formalism: The Singular Case

See ref. [52]. For singular Lagrangians, the existence of an asso-
ciated Hamiltonian formalism is not assured unless some mini-
mal regularity conditions are assumed. For instance, in the stan-
dard multisymplectic formulation of conservative field theories,
a sufficient condition is that the Lagrangian functions be almost-
regular.[41,42,45] Similarly, in the multicontact formalism of action-
dependent field theories, we say that a Lagrangian L ∈ 𝒞∞()
is said to be almost-regular if (i) ∗

0 = () is a submanifold
of ∗, (ii)  is a submersion onto its image, and (iii) the fibers
−1(p), for every p ∈ ∗

0 , are connected submanifolds of . Nev-
ertheless, even in these cases, the existence of a premulticontact
structure in ∗

0 is not assured unless additional conditions are
assumed, as we will see in the examples.
Now, as a consequence of the definition of the Legendre map

 (see (47)), we have that

∗
0 = P0 × Λm−1(T∗M) ≃ P0 ×ℝm . (57)

It is a bundle over M with projection 𝜏0 : ∗
0 → M; which is en-

dowed with natural coordinates denoted (x𝜇, ya, pI, s𝜇), 1 ≤ I ≤
dim ∗

0 − n − 2m, and are such that 𝜔 = dmx.

We denote by0 :  → ∗
0 the restriction of to∗

0 ; that is, = 𝚥0◦0, where 𝚥0 : ∗
0 → J1∗𝜋 denotes the canonical inclu-

sion. Then, for almost-regular Lagrangian systems, the form Θ
projects to ∗

0 by 0, and then we have a Hamiltonian m-form
Θ0 ∈ Ωm(∗

0 ) such that Θ = ∗
0 Θ

0 whose local expression is

Θ0 = F𝜇
ady

a ∧ dm−1x𝜇 +H0 d
mx + ds𝜇 ∧ dm−1x𝜇 , (58)

where H0 ∈ 𝒞∞(∗
0 ) is now the Hamiltonian function which is

obtained as the projection of the Lagrangian energy E by 0;
that is, E =  ∗

0 H0. The functions F𝜇
a ∈ 𝒞∞(∗

0 ) are deter-
mined by the conditionΘ = ∗

0 Θ
0 . IfΘ0 is a premulticontact

form, then (∗
0 ,Θ

0 ,𝜔) is said to be the premulticontact Hamilto-
nian system associated with the premulticontact Lagrangian sys-
tem ( ,Θ,𝜔).
Let (x𝜇 , ya, pI, s𝜇) be adapted coordinates for the premulticon-

tact manifold (∗
0 ,Θ

0 ,𝜔) (see the Appendix B). If F
𝜇
a are such

that

𝜕F𝜇
a

𝜕s𝜈
= 0 , (59)

then

𝜎Θ0 =
𝜕H0

𝜕s𝜇
dx𝜇 , (60)

and then the corresponding Hamiltonian (m + 1)-form Ω
0

 ∈
Ωm+1(∗

0 ) is

Ω
0
 = dΘ0 + 𝜎Θ0 ∧ Θ0 = dΘ0 +

𝜕H0

𝜕s𝜇
dx𝜇 ∧ Θ0

= d(F𝜇a dy
a ∧ dm−1x𝜇 +H0 d

mx) −
(
𝜕H0

𝜕s𝜇
F𝜇a dy

a +
𝜕H0

𝜕s𝜇
ds𝜇

)
∧ dmx

=
𝜕F𝜇a
𝜕pI

dpI ∧ dya ∧ dm−1x𝜇 +
𝜕F𝜇a
𝜕yb

dyb ∧ dya ∧ dm−1x𝜇

+
𝜕H0

𝜕pI
dpI ∧ dmx +

(
𝜕H0

𝜕ya
−

𝜕H0

𝜕s𝜇
F𝜇a −

𝜕F𝜇a
𝜕x𝜇

)
dya ∧ dmx . (61)

For this system the field equations for sections 𝝍 : M → ∗
0

and for 𝜏0-transverse, locally decomposable multivector fields
X0

∈ 𝖷m(∗
0 ) are, respectively,

𝝍
∗Θ0 = 0 , 𝝍

∗𝜄(Y)Ω
0

 = 0 , for every Y ∈ 𝖷(∗) . (62)

and

𝜄
(
X0

)
Θ0 = 0 , 𝜄

(
X0

)
Ω
0

 = 0 ; (63)

where the condition of 𝜏0-transversality is imposed again by re-
quiring that 𝜄

(
X0

)
𝜔 = 1. In general, these equations are not

compatible on ∗
0 and a constraint algorithm must be imple-

mented in order to find a final constraint submanifold ∗
f → ∗

0

(if it exists) where there are integrablemultivector fields solutions
to the field equations on ∗

f and being tangent to ∗
f . This algo-

rithm is explained in some of the applications developed in Sec-
tions 4 and 5.

Fortschr. Phys. 2025, 73, e70000 © 2025 Wiley-VCH GmbHe70000 (9 of 25)
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If X0
∈ 𝖷m(∗

0 ) is a 𝜏0-transverse and locally decomposable
multivector field whose local expression is

X0
=

m−1⋀
𝜇=0

(
𝜕

𝜕x𝜇
+ (X0

)a
𝜇

𝜕

𝜕ya
+ (X0

)I
𝜇

𝜕

𝜕pI
+ (X0

)𝜈
𝜇

𝜕

𝜕s𝜈

)
, (64)

and it is a solution to Equations (63); taking into account the local
expressions (58) and (61), these field equations lead to

0 = (X0
)a
𝜇
F𝜇
a +H0 + (X0

)𝜇
𝜇
, (65)

0 = −
𝜕F𝜇

a

𝜕pI
(X0

)I
𝜇
+

(
𝜕F𝜇

b

𝜕ya
−

𝜕F𝜇
a

𝜕yb

)
(X0

)b
𝜇
+

𝜕H0

𝜕ya
−

𝜕H0

𝜕s𝜇
F𝜇
a −

𝜕F𝜇
a

𝜕x𝜇
,

(66)

0 =
𝜕F𝜇

a

𝜕pI
(X0

)a
𝜇
+

𝜕H0

𝜕pI
, (67)

together with a last group of equations which are identi-
ties when the above ones are taken into account. If 𝝍 (x𝜈) =
(x𝜇 , ya(x𝜈), pI(x𝜈), s𝜇(x𝜈)) is an integral section of X0

, then it is
a solution to the Equations (62) which read as

0 = (F𝜇
a ◦𝝍 )

𝜕ya

𝜕x𝜇
+ (H0◦𝝍 ) +

𝜕s𝜇

𝜕x𝜇
, (68)

0 =
(
𝜕F𝜇

a

𝜕pI
◦𝝍

)
𝜕pI

𝜕x𝜇
+

((
𝜕F𝜇

b

𝜕ya
−

𝜕F𝜇
a

𝜕yb

)
◦𝝍

)
𝜕yb

𝜕x𝜇

+
(
𝜕H0

𝜕ya
−

𝜕H0

𝜕s𝜇
F𝜇
a −

𝜕F𝜇
a

𝜕x𝜇

)
◦𝝍 , (69)

0 =
(
𝜕F𝜇

a

𝜕pI
◦𝝍

)
𝜕ya

𝜕x𝜇
+
(
𝜕H0

𝜕pI
◦𝝍

)
. (70)

In general, these equations have no solutions everywhere on
∗
0 . In the most favorable cases, the Hamiltonian field equa-

tions are compatible only on a submanifold of ∗
f ⊆ ∗

0 which
is obtained by applying a suitable constraint algorithm. This al-
gorithm is explained in some of the applications developed in
Sections 4 and 5.

4. Application to General Lagrangians

As first applications of this (pre)multicontact formulation, we
consider, in general, the cases of field theories described by
quadratic or affine Lagrangians.

4.1. Quadratic (regular and singular) Lagrangians

Many field theories in physics are described by quadratic-type
Lagrangians,[85,86]

L(x𝜇 , ya, ya
𝜇
) = 1

2
f 𝜇𝜈ab (x

𝛼 , yc) ya
𝜇
yb
𝜈
− V(x𝛼 , yc) . (71)

They are usually called mechanical-type Lagrangians, or modified
kinetic energy Lagrangians when the functions f 𝜇𝜈ab are not con-
stant. We will assume, without lost of generality, that f 𝜇𝜈ab = f 𝜈𝜇ba .

We study a modification of these Lagrangians including a term
that depends on “action variables”.

4.1.1. Lagrangian Formalism

As in Section 3.2, consider the bundle  ≡ J1𝜋 ×ℝm with coor-
dinates (x𝜇 , ya, ya

𝜇
, s𝜇). A quadratic Lagrangian in  has the form,

L(x𝜇 , ya, ya
𝜇
, s𝜇) = 1

2
f 𝜇𝜈ab (x

𝛼 , yc, s𝛼) ya
𝜇
yb
𝜈
− V(x𝛼 , yc, s𝛼) ∈ 𝒞∞() ,

(72)

where we have included a dependence on the additional variables
s𝜇 to the functions f 𝜇𝜈ab and V . This Lagrangian is either regular
or singular, depending on the regularity of the quadratic form
whose matrix is

(
𝜕2L

𝜕ya𝜇𝜕y
b
𝜈

)
= f 𝜇𝜈ab . The energy Lagrangian function

is

E = 𝜕L
𝜕ya

𝜇

ya
𝜇
− L = 1

2
f 𝜇𝜈ab y

a
𝜇
yb
𝜈
+ V ∈ 𝒞∞() , (73)

the Lagrangian m-form (25) is

Θ = −f 𝜇𝜈ab y
b
𝜈
dya ∧ dm−1x𝜇 + E dmx + ds𝜇 ∧ dm−1x𝜇 ∈ Ωm() .

(74)
and

𝜎Θ = −

(
1
2

𝜕f 𝜇𝜈ab

𝜕s𝜌
ya
𝜇
yb
𝜈
− 𝜕V

𝜕s𝜌

)
dx𝜌 . (75)

Given a semiholonomic m-multivector field,

X =
m−1⋀
𝜇=0

X𝜇 =
m−1⋀
𝜇=0

(
𝜕

𝜕x𝜇
+ ya

𝜇

𝜕

𝜕ya
+ (X)a𝜇𝜈

𝜕

𝜕ya
𝜈

+ (X)𝜈𝜇
𝜕

𝜕s𝜈

)
∈ 𝖷m() , (76)

the Lagrangian Equations (41) and (42) take the form

(X)𝜇𝜇 = L , (77)

1
2

𝜕f 𝜇𝜈bc

𝜕ya
yb
𝜇
yc
𝜈
− 𝜕V
𝜕ya

−
𝜕f 𝜇𝜈ab

𝜕x𝜇
yb
𝜈
−

𝜕f 𝜇𝜈ac

𝜕yb
yc
𝜈
yb
𝜇
−

𝜕f 𝜇𝛼ab

𝜕s𝜈
yb
𝛼
(X)𝜈𝜇

− f 𝜇𝜈ab (X)b𝜇𝜈 =
(
𝜕V
𝜕s𝜇

− 1
2

𝜕f 𝛼𝛽dc

𝜕s𝜇
yd
𝛼
yc
𝛽

)
f 𝜇𝜈ab y

b
𝜈
. (78)

For the integral (holonomic) sections 𝝍 (x𝜈) =
(
x𝜇 , ya(x𝜈),

𝜕ya

𝜕x𝜇
(x𝜈), s𝜇(x𝜈)

)
of X, Equations (77) and (78) read,

𝜕s𝜇

𝜕x𝜇
= L , (79)

1
2

𝜕f 𝜇𝜈bc

𝜕ya
𝜕yb

𝜕x𝜇
𝜕yc

𝜕x𝜈
− 𝜕V

𝜕ya
−

𝜕f 𝜇𝜈ab

𝜕x𝜇
𝜕yb

𝜕x𝜈
−

𝜕f 𝜇𝜈ac

𝜕yb
𝜕yc

𝜕x𝜈
𝜕yb

𝜕x𝜇
−

𝜕f 𝜇𝛼ab

𝜕s𝜈
𝜕yb

𝜕x𝛼
𝜕s𝜈

𝜕x𝜇

− f 𝜇𝜈ab

𝜕2yb

𝜕x𝜇𝜕x𝜈
=

(
𝜕V
𝜕s𝜇

− 1
2

𝜕f 𝛼𝛽dc

𝜕s𝜇
𝜕yd

𝜕x𝛼
𝜕yc

𝜕x𝛽

)
f 𝜇𝜈ab

𝜕yb

𝜕x𝜈
(80)

which are the Equations (44) and (45) for this Lagrangian.

Fortschr. Phys. 2025, 73, e70000 © 2025 Wiley-VCH GmbHe70000 (10 of 25)
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When the Lagrangian is regular, Θ is a multicontact form
and these equations are compatible. In the singular case, if Θ
is a premulticontact form, Equations (78) could be incompatible;
then compatibility constraints appear, and they define a subman-
ifold of  where the equations have solutions. Therefore, a con-
straint algorithm must be implemented as usual in order to find
the final constraint submanifold f ⊆  , if it exists, where there
are consistent solutions.
As a particular situation, we can assume that

𝜕f 𝜇𝜈
ab

𝜕s𝛼
= 0 and that

any coordinate has a velocity present, that is, for any a there exist
𝜇, 𝜈 and b such that f 𝜇𝜈ab ≠ 0. Then, the Equations (78) reduce to

1
2

𝜕f 𝜇𝜈bc

𝜕ya
yb
𝜇
yc
𝜈
− 𝜕V

𝜕ya
−

𝜕f 𝜇𝜈ab

𝜕x𝜇
yb
𝜈
−

𝜕f 𝜇𝜈ac

𝜕yb
yc
𝜈
yb
𝜇

− f 𝜇𝜈ab (X)b𝜇𝜈 =
𝜕V
𝜕s𝜇

f 𝜇𝜈ab y
b
𝜈
. (81)

which, as mentioned above, can be compatible or not depending
on the regularity of L; namely, on the quadratic form f 𝜇𝜈ab . For the
integral (holonomic) sections of X, these equations lead to

1
2

𝜕f 𝜇𝜈bc

𝜕ya
𝜕yb

𝜕x𝜇
𝜕yc

𝜕x𝜈
− 𝜕V

𝜕ya
−

𝜕f 𝜇𝜈ab

𝜕x𝜇
𝜕yb

𝜕x𝜈
−

𝜕f 𝜇𝜈ac

𝜕yb
𝜕yc

𝜕x𝜈
𝜕yb

𝜕x𝜇

− f 𝜇𝜈ab

𝜕2yb

𝜕x𝜇𝜕x𝜈
= 𝜕V

𝜕s𝜇
f 𝜇𝜈ab

𝜕yb

𝜕x𝜈
. (82)

4.1.2. Hamiltonian Formalism

The Legendre map generated by the Lagrangian (72) gives the
multimomenta

p𝜇a = f 𝜇𝜈ab yb
𝜈
. (83)

In the hyperregular case this map is a diffeomorphism and these
conditions give us the Hamiltonian function

H(x𝜇, ya, p𝜇a , s
𝜇) = 1

2
f ab
𝜇𝜈
(x𝜇 , ya, s𝜇) p𝜇a p

𝜈
b + V(x𝜇, ya, s𝜇) ∈ 𝒞∞(∗),

(84)

where (f ab
𝜇𝜈
) = (f 𝜇𝜈ab )

−1 in the sense f ab
𝜇𝜈

f 𝜈𝜌bc = 𝛿ac 𝛿
𝜌
𝜇
. The Hamilto-

nian premulticontact m-form has the local expression (48), and

𝜎 =

(
1
2

𝜕f ab
𝜇𝜈

𝜕s𝜌
p𝜇a p

𝜈
b +

𝜕V
𝜕s𝜌

)
dx𝜌 . (85)

For a multivector field X ∈ 𝖷m(∗) whose local expression is
(54), the Hamilton–De Donder–Weyl Equations (55) are

(X )𝜇𝜇 = f ab
𝜇𝜈

p𝜇a p
𝜈
b − V , (X )a𝜇 = f ab

𝜇𝜈
p𝜈b , (86)

(X )𝜇𝜇a = −

(
1
2

𝜕f bc
𝜈𝜌

𝜕ya
p𝜈b p

𝜌
c +

𝜕V
𝜕ya

+ 1
2

𝜕f bc
𝜈𝜌

𝜕s𝜇
p𝜇a p

𝜈
b p

𝜌
c +

𝜕V
𝜕s𝜇

p𝜇a

)
.

(87)

The integral sections 𝝍 (x𝜈) = (x𝜇, ya(x𝜈), p𝜇a (x𝜈), s𝜇(x𝜈)) of X are
the solutions to the Equations (56) which in this case are

𝜕s𝜇

𝜕x𝜇
= f ab

𝜇𝜈
p𝜇a p

𝜈
b − V ,

𝜕ya

𝜕x𝜇
= f ab

𝜇𝜈
p𝜈b , (88)

𝜕p𝜇a
𝜕x𝜇

= −

(
1
2

𝜕f bc
𝜈𝜌

𝜕ya
p𝜈b p

𝜌
c +

𝜕V
𝜕ya

+ 1
2

𝜕f bc
𝜈𝜌

𝜕s𝜇
p𝜇a p

𝜈
b p

𝜌
c +

𝜕V
𝜕s𝜇

p𝜇a

)
. (89)

The singular case corresponds to the situation in which the ma-
trix (f 𝜇𝜈ab ) is not regular. If the rank of this matrix is constant ev-
erywhere on , then the Lagrangian is almost-regular. Therefore,
the Legendre map is not a diffeomorphism but a submersion
onto its image, and the Equations (83) yield constraints defining
the submanifold ∗

0 ⊂ ∗. Then, we have the Hamiltonian func-
tionH0 ∈ 𝒞∞(∗

0 ) and the Hamiltonian premulticontactm-form
Θ0 ∈ Ωm(∗

0 ) given by (48), and we are in a situation like the one
described generically in Section 3.4.

4.2. Affine Lagrangians

Some relevant classical field theories in physics such as the
Einstein–Palatini (ormetric-affine) approach to gravitation,[87–89] or
Dirac fermion fields[85] (among others), are described by affine
Lagrangians. In natural coordinates, their general expression is

L(x𝜇 , yb, yb
𝜇
) = f 𝛼a (x

𝜇 , yb) ya
𝛼
− V(x𝜇, yb) . (90)

Next, we study amodification of these Lagrangians which include
a dependence on “action variables”.

4.2.1. Lagrangian Formalism

As above, consider the bundle  ≡ J1𝜋 ×ℝm with coordinates
(x𝜇 , ya, ya

𝜇
, s𝜇). An affine Lagrangian in  is a function of the form,

L(x𝜇 , yb, yb
𝜇
, s𝜇) = f 𝛼a (x

𝜇, yb, s𝜇) ya
𝛼
− V(x𝜇, yb, s𝜇) ∈ 𝒞∞() , (91)

which is a singular Lagrangian since 𝜕2L
𝜕yb𝜈𝜕y

a
𝜇

= 0.

Note that, as pointed out in Remark 3.1, not every Lagrangian
function of the form (91) yields a premulticontact structure. A
particular case giving premulticontact structures are those affine
Lagrangians such that 𝜕f 𝛼a

𝜕s𝜇
= 0, and there exist functions Jb

𝜇
∈

∞() such that
𝜕V
𝜕s𝜇

f 𝜇a + 𝜕V
𝜕ya

+
𝜕f 𝜇a
𝜕x𝜇

= Jb
𝜇

(
𝜕f 𝜇a
𝜕yb

−
𝜕f 𝜇b
𝜕ya

)
. (92)

A relevant example of an affine Lagrangian satisfying these con-
ditions is the metric-affine Lagrangian for General Relativity (see
Section 5.4). Hereafter, we assume that all the affine Lagrangians
are of this kind.
The Lagrangian energy function is

E = 𝜕L
𝜕ya

𝜇

ya
𝜇
− L = V ∈ 𝒞∞() , (93)
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the Lagrangian m-form (25) is

Θ = −f 𝜇a dya ∧ dm−1x𝜇 + V dmx + ds𝜇 ∧ dm−1x𝜇 ∈ Ωm() , (94)

and

𝜎Θ = −
(
𝜕f 𝛼a
𝜕s𝜇

ya
𝛼
− 𝜕V

𝜕s𝜇

)
dx𝜇 . (95)

For a semiholonomic m-multivector field such as

X =
m−1⋀
𝜇=0

X𝜇 =
m−1⋀
𝜇=0

(
𝜕

𝜕x𝜇
+ ya

𝜇

𝜕

𝜕ya
+ (X)a𝜇𝜈

𝜕

𝜕ya
𝜈

+ (X)𝜈𝜇
𝜕

𝜕s𝜈

)
∈ 𝖷m() , (96)

the Lagrangian Equations (41) and (42) read

(X)𝜇𝜇 = L , (97)

𝜕f 𝜇b
𝜕ya

yb
𝜇
− 𝜕V

𝜕ya
−

𝜕f 𝜇a
𝜕x𝜇

−
𝜕f 𝜇a
𝜕yb

yb
𝜇
= 𝜕V

𝜕s𝜇
f 𝜇a . (98)

For the integral (holonomic) sections 𝝍 (x𝜈) =
(
x𝜇 , ya(x𝜈),

𝜕ya

𝜕x𝜇
(x𝜈), s𝜇(x𝜈)

)
of X, Equations (97) and (98) lead to

𝜕s𝜇

𝜕x𝜇
= L , (99)

𝜕f 𝜇b
𝜕ya

𝜕yb

𝜕x𝜇
− 𝜕V

𝜕yb
−

𝜕f 𝜇a
𝜕x𝜇

−
𝜕f 𝜇a
𝜕yb

𝜕yb

𝜕x𝜇
= 𝜕V

𝜕s𝜇
f 𝜇a , (100)

which are the Equations (44) and (45) for this system.
Due to the singularity of affine Lagrangians, Equations (98) are

constraints, which we denote by 𝜁a. They define the compatibility
submanifold 1 ⊂  . Next, we impose the tangency of the mul-
tivector fields (96) which are solutions to the Lagrangian equa-
tions on 1. These conditions are

X𝛼(𝜁a)|1 = 0 , (101)

and originate a system of equations giving relations among the
component functions (X)𝜈a and (X)𝜈𝜇 , and/or new constraints.
In the case where new constraints arise, the constraint algorithm
continues as usual until obtaining the final constraint submani-
fold f ⊆  .

4.2.2. Hamiltonian Formalism

The Legendre map generated by the Lagrangian (91) gives the
relations

p𝜇a = f 𝜇a , (102)

which are primary constraints defining the submanifold ∗
0 ⊂ ∗;

thus ∗
0 is diffeomorphic to E and local coordinates in ∗

0 are
(x𝜇 , ya, s𝜇). The Lagrangian is almost-regular and, as stated above,
we assume the conditions 𝜕f 𝜇a

𝜕s𝜈
= 0 and (92).

The Hamiltonian function is

H0 = V ∈ 𝒞∞(∗
0 ) . (103)

The Hamiltonian premulticontact m-form (58) is

Θ0 = −f 𝜇a dya ∧ dm−1x𝜇 + V dmx + ds𝜇 ∧ dm−1x𝜇 ∈ Ωm(∗
0 ),

(104)

and (x𝜇 , ya, s𝜇) are adapted coordinates for the premulticontact
structure (Θ0 ,𝜔). Furthermore,

𝜎0 = 𝜕V
𝜕s𝜇

dx𝜇 . (105)

For a 𝜏0-transverse, locally decomposable multivector field, such
as

X0
=

m−1⋀
𝜇=0

X𝜇 =
m−1⋀
𝜇=0

(
𝜕

𝜕x𝜇
+ (X0

)a
𝜇

𝜕

𝜕ya
+ (X0

)𝜈
𝜇

𝜕

𝜕s𝜈

)
∈ 𝖷m(∗

0 ),

(106)

the Hamiltonian Equations (65) and (66) lead to

0 = −(X0
)a
𝜇
f 𝜇a + V + (X0

)𝜇
𝜇
, (107)

0 =

(
𝜕f 𝜇a
𝜕yb

−
𝜕f 𝜇b
𝜕ya

)
(X0

)b
𝜇
+ 𝜕V

𝜕ya
+ 𝜕V

𝜕s𝜇
f 𝜇a +

𝜕f 𝜇a
𝜕x𝜇

, (108)

and Equations (67) vanish identically. For the integral sections
𝝍 (x𝜈) =

(
x𝜇 , ya(x𝜈), s𝜇(x𝜈)

)
of X0

, Equations (107) and (108)
read,

0 = −
𝜕ya

𝜕x𝜇
f 𝜇a + V + 𝜕s𝜇

𝜕x𝜇
, (109)

0 =

(
𝜕f 𝜇a
𝜕yb

−
𝜕f 𝜇b
𝜕ya

)
𝜕yb

𝜕x𝜇
+ 𝜕V

𝜕ya
+ 𝜕V

𝜕s𝜇
f 𝜇a +

𝜕f 𝜇a
𝜕x𝜇

. (110)

The compatibility of Equations (108) depends on the rank of

the matrix
(

𝜕f 𝜇a
𝜕yb

− 𝜕f 𝜇
b

𝜕ya

)
. If this system is incompatible, then com-

patibility constraints could appear, defining a submanifold of ∗
0

where the equations have solutions, and therefore the constraint
algorithm must be implemented as usual until finding the final
constraint submanifold ∗

f ⊆ ∗
0 where consistent solutions ex-

ist.

5. Application to Particular Theories

In this section, we study some specific classical field theories in
physics described by quadratic and affine Lagrangians. We will
keep a generic expression for the Lagrangian’s coefficients. Due
to this generality, not all possible values will lead to stable or phys-
ically sound systems. Some particular instances with an interest-
ing interpretation will be considered.

Fortschr. Phys. 2025, 73, e70000 © 2025 Wiley-VCH GmbHe70000 (12 of 25)
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5.1. One-Dimensional Wave Equation with First-Order Terms and
External Force

We study a one-dimensional wave equation, which can be consid-
ered an infinitely long vibrating string. Consider the coordinates
(t, x) for the time and the space. Denote by y the separation of a
point in the string from its equilibrium point, and hence yt and
yx denote themultivelocities associated with the two independent
variables. The Lagrangian function for this system is

L(y, yt, yx) =
1
2
𝜌y2t −

1
2
𝜏y2x , (111)

where 𝜌 is the linear mass density of the string and 𝜏 is the ten-
sion of the string. We assume that these quantities are constant.
The Euler–Lagrange equation for this Lagrangian density is

𝜕2y
𝜕t2

= c2
𝜕2y
𝜕x2

, (112)

where c2 = 𝜏

𝜌
is the square of the propagation speed of the wave.

This last equation is the one-dimensional wave equation.

5.1.1. Lagrangian Formalism

This is a particular case of a hyperregular quadratic Lagrangian.
To model a vibrating string with linear damping, we can mod-

ify the Lagrangian function (111) so that it becomes a multi-
contact Lagrangian.[52] The fiber bundle 𝜏 :  → ℝ2 has adapted
coordinates (t, x, y, yt, yx, s

t, sx), and the volume form of the base
space ℝ2 reads 𝜔 = dt ∧ dx. The modified Lagrangian function L
reads

L(t, x, y, yt, yx, s
t, sx) = 1

2
𝜌y 2t − 1

2
𝜏y 2x + ast − b

𝜌

𝜏
sx + 𝜌yf (t, x) ,

(113)

where a, b ∈ ℝ are constants, and f (t, x) represents an external
force acting on the string. It is a regular Lagrangian. The La-
grangian energy associated with the Lagrangian (113) is

E = 1
2
𝜌y 2t − 1

2
𝜏y 2x − ast + b

𝜌

𝜏
sx − 𝜌yf (t, x) . (114)

The Lagrangian multicontact two-form (25) is now

Θ = −𝜌yt dy ∧ dx − 𝜏yx dy ∧ dt + E dt ∧ dx

+ dst ∧ dx − dsx ∧ dt . (115)

and

𝜎Θ = − 𝜕L
𝜕st

dt − 𝜕L
𝜕sx

dx = −adt + b
𝜌

𝜏
dx . (116)

The Lagrangian Equation (79) for a holonomic section

𝝍 (t, x) =
(
t, x, y(t, x),

𝜕y
𝜕t
(t, x),

𝜕y
𝜕x

(t, x), st(t, x), sx(t, x)
)

read

𝜕st

𝜕t
+ 𝜕sx

𝜕x
= L , (117)

𝜕2y
𝜕t2

− 𝜏

𝜌

𝜕2y
𝜕x2

= a
𝜕y
𝜕t

+ b
𝜕y
𝜕x

+ f (t, x) . (118)

which are the Equations (44) and (45) for this Lagrangian. In par-
ticular, Equation (118) is the one-dimensional wave equationwith
an external force f (t, x) and two first-order terms accounting for
the nonconservativity.

5.1.2. Hamiltonian Formalism

The fiber bundle 𝜏 : ∗ → ℝ2 has adapted coordinates
(t, x, y, pt, px, st, sx). The Legendre map  :  → ∗ associ-
ated with the Lagrangian (113) is given by

(t, x, y, yt, yx, st, sx) = (t, x, y, pt, px, st, sx) , (119)

where pt = 𝜌yt and p
x = −𝜏yx. The Legendre map is a global dif-

feomorphism since the Lagrangian function is hyperregular. The
Hamiltonian function is

H = 1
2𝜌
(pt)2 − 1

2𝜏
(px)2 − ast + b

𝜌

𝜏
sx − 𝜌yf (t, x) . (120)

The Hamiltonian m-form (48) is

Θ = −pt dy ∧ dx + px dy ∧ dt + dst ∧ dx − dsx ∧ dt (121)

+
(
1
2𝜌
(pt)2 − 1

2𝜏
(px)2 − ast + b

𝜌

𝜏
sx − 𝜌yf(t, x)

)
dt ∧ dx , (122)

and now

𝜎Θ = 𝜕H
𝜕st

dt + 𝜕H
𝜕sx

dx = −adt + b
𝜌

𝜏
dx . (123)

For a section 𝝍 (t, x) = (t, x, y(t, x), pt(t, x), px(t, x), st(t, x), sx(t, x)),
the Herglotz–Hamilton–De Donder–Weyl Equations (56) read

𝜕st

𝜕t
+ 𝜕sx

𝜕x
= 1
2𝜌
(pt)2 − 1

2𝜏
(px)2 + ast − b

𝜌

𝜏
sx + 𝜌yf (t, x) , (124)

𝜕y
𝜕t

= 1
𝜌
pt ,

𝜕y
𝜕x

= −1
𝜏
px , (125)

𝜕pt

𝜕t
+

𝜕px

𝜕x
= 𝜌f (t, x) + apt − b

𝜌

𝜏
px . (126)

Combining the last three equations above, we obtain Equa-
tion (118). Thus, the Lagrangian and Hamiltonian formalisms
are equivalent.

5.2. Klein–Gordon Equation: The Telegrapher Equation

The Klein–Gordon equation,

(□ +m2)y ≡ 𝜕𝜇𝜕
𝜇y +m2y ≡ 𝜕2y

𝜕x𝜇𝜕x𝜇
+m2y = 0 , (127)
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is one of the most important equations in classical and quan-
tum field theory [57,90, p. 108], In it, y(x𝜇) is a scalar field in the
Minkowski space-time ℝ4, we denote 𝜕𝜇 ≡ g𝜇𝜈𝜕𝜈 , m ≥ 0 is a con-
stant parameter, and□ denotes de D’Alembert operator in ℝ4.
To develop themultisymplectic formulation of this theory,[74,91]

we use space-time coordinates (x𝜇), 𝜇 = 0,… , 3, we denote y the
field variable, and y𝜇 the correspondingmultivelocities. Then, the
multivelocity phase space J1𝜋 has natural coordinates (x𝜇, y, y𝜇),
and hence, the Lagrangian function for the Klein–Gordon equa-
tion is

L0(x
𝜇 , y, y𝜇) =

1
2
y𝜇 y

𝜇 − 1
2
m2y2 , (128)

(where y𝜇 = g𝜇𝜈y𝜈), which, evaluated on sections 𝜙(x) =(
x𝜇, y(x), 𝜕y

𝜕x𝜇
(x)

)
, gives L0(𝜙) =

1
2
𝜕𝜇y 𝜕

𝜇y − 1
2
m2y2. This La-

grangian function can be slightly modified to include a more
generic potential, L0 =

1
2
y𝜇 y

𝜇 − V(y); however, we stick to the
simplest case. Note that, in any case, it is a quadratic hyperregular
Lagrangian (see Section 4.1).

5.2.1. Lagrangian Formalism

Consider now the bundle 𝜏 :  → ℝ4, with adapted coordinates
(x𝜇 , y, y𝜇 , s

𝜇), and the volume form 𝜔 = dx0 ∧⋯ ∧ dx3 ≡ d4x on
ℝ4. The contactified Lagrangian L ∈ 𝒞∞() we propose is given
by

L(x𝜇 , y, y𝜇 , s
𝜇) = L0(x

𝜇, y, y𝜇) + 𝛾𝜇s
𝜇 = 1

2
y𝜇y

𝜇 − 1
2
m2y2 + 𝛾𝜇s

𝜇 ,

(129)

where 𝛾 ≡ (𝛾𝜇) ∈ ℝ4 is a constant vector. It is a regular La-
grangian. Its associated Lagrangian energy is

E = 1
2
y𝜇 y

𝜇 + 1
2
m2y2 − 𝛾𝜇s

𝜇 . (130)

The Lagrangian multicontact 4-form (25) is now

Θ = y𝜇dy ∧ dx𝜇 + Ed4x + ds𝜇 ∧ dx𝜇 . (131)

Now, 𝜎Θ = −𝛾𝜇dx𝜇 . The Equations (80) for holonomic sections

𝝍 (x𝜈) =
(
x𝜇 , y(x𝜈), 𝜕y

𝜕x𝜇
(x𝜈), s𝜇(x𝜈)

)
are

𝜕s𝜇

𝜕x𝜇
= L , (132)

m2y + g𝜇𝜈
𝜕2y

𝜕x𝜇𝜕x𝜈
= g𝜇𝜈𝛾𝜈

𝜕y
𝜕x𝜇

. (133)

and they are the Equations (44) and (45) for this Lagrangian. De-
noting 𝛾𝜇 = g𝜇𝜈𝛾𝜈 , we can write Equation (133) as

𝜕2y
𝜕x𝜇𝜕x𝜇

+m2y = 𝛾𝜇
𝜕y
𝜕x𝜇

, (134)

which is the Klein–Gordon equation with additional first-order
terms.

Remark 5.1. For simplicity, in this example, we have considered
the Minkowski metric and 𝛾𝜇 constants. However, a similar pro-
cedure can be performed for a generic metric g𝜇𝜈 = g𝜇𝜈(x

𝜈) and
functions 𝛾𝜇 = 𝛾𝜇(x

𝜈), thus obtaining the equation

𝜕2y
𝜕x𝜇𝜕x𝜇

+m2y +
𝜕g𝜇𝜈
𝜕x𝜇

𝜕y
𝜕x𝜈

= 𝛾𝜇
𝜕y
𝜕x𝜇

. (135)

Telegrapher’s equation: An interesting application of thismod-
ified Klein–Gordon Equation (134) is that we can derive from it
the so-called telegrapher’s equation (see refs. [92, p. 306] and [93
p. 653]) which describes the current and voltage on a uniform
electrical transmission line:

⎧⎪⎨⎪⎩
𝜕V
𝜕x

= −L𝜕I
𝜕t

− RI ,

𝜕I
𝜕x

= −C 𝜕V
𝜕t

−GV ,
(136)

where V is the voltage, I is the current, R is the resistance, L is
the inductance, C is the capacitance, and G is the conductance.
This system can be decoupled, obtaining the system

⎧⎪⎨⎪⎩
𝜕2V
𝜕x2

= LC 𝜕2V
𝜕t2

+ (LG + RC)𝜕V
𝜕t

+ RGV ,

𝜕2I
𝜕x2

= LC 𝜕2I
𝜕t2

+ (LG + RC)𝜕I
𝜕t

+ RGI .

(137)

Note that the two equations in the system above are identical,
and also known as telegrapher’s equations. Both of them can be
written as

□y + 𝛾
𝜕y
𝜕t

+m2y = 0 , (138)

where □ is the d’Alembert operator in 1+1 dimensions, and 𝛾

and m2 are adequate constants. Written this way, we can see the
telegrapher equation as amodifiedKlein–Gordon equation.More
precisely, taking 𝛾𝜇 = (−𝛾 , 0, 0, 0) in (134), we obtain the telegra-
pher Equation (138).

5.2.2. Hamiltonian Formalism

The adapted coordinates of the fiber bundle 𝜏 : ∗ → ℝ2 are
(x𝜇 , y, p𝜇 , s𝜇). The Legendre map  :  → ∗ associated with
the Lagrangian (129) is

(x𝜇 , y, y𝜇 , s𝜇) = (x𝜇 , y, p𝜇 , s𝜇) , (139)

with p𝜇 = y𝜇 . It is a diffeomorphism since the Lagrangian func-
tion is hyperregular. The Hamiltonian function is

H = 1
2
p𝜇p𝜇 +

1
2
m2y2 − 𝛾𝜇s

𝜇 , (140)

the contact Hamiltonian m-form (48) is

Θ = p𝜇dy ∧ dx𝜇 +H d4x + ds𝜇 ∧ dx𝜇 , (141)
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and now 𝜎Θ = −𝛾𝜇dx𝜇 . The Herglotz–Hamilton–De Donder–
Weyl Equations (56) for sections 𝝍 (x𝜈) = (x𝜇, y(x𝜈), p𝜇(x𝜈), s𝜇(x𝜈))
are

𝜕s𝜇

𝜕x𝜇
= 1
2
p𝜇p𝜇 −

1
2
m2y2 + 𝛾𝜇s

𝜇 , (142)

𝜕y
𝜕x𝜇

= p𝜇 ,
𝜕p𝜇

𝜕x𝜇
= −m2y + 𝛾𝜇p

𝜇 . (143)

Combining the last two equations above, we obtain Equa-
tion (134). Thus, the Lagrangian and Hamiltonian formalisms
are equivalent.
As pointed out at the end of the previous section, taking 𝛾𝜇 =

(−𝛾 , 0, 0, 0), we recover the telegrapher’s Equation (138) as a par-
ticular case of the Klein–Gordon equation with damping.

5.3. Maxwell’s Electromagnetism

Action-dependent Maxwell’s equations have been studied in the
context of electromagnetism in matter. A variational derivation
was first done in ref. [57] and later formalized using k-contact
geometry in refs. [75, 94]. The damped/forced electromagnetic
waves have been studied in ref. [57] and some applications to
materials are explored in ref. [75]. We present the multicontact
description based on ref. [52].

5.3.1. Lagrangian Formalism

We use the description of Electromagnetism in terms of princi-
ple bundles, that is, as a Yang–Mills theory. Consider the prin-
ciple bundle P → M with structure group U(1) over a four-
dimensional space-time M. The associated bundle of connec-
tions is denoted as 𝜋 : C → M (see ref. [95] for more details). The
multicontact Lagrangian formalism takes place in the space  =
J1𝜋 ×M Λ3(T∗M), with local coordinates (x𝜇 , A𝜇 , A𝜇,𝜈 , s

𝜇) such that
𝜔 = dx0 ∧ dx1 ∧ dx2 ∧ dx3. For this example, we consider the
electromagnetic Lagrangian with a linear dissipation term:

L = − 1
4𝜇0

g𝛼𝜇g𝛽𝜈F𝜇𝜈F𝛼𝛽 − A𝛼J
𝛼 − 𝛾𝛼s

𝛼 , (144)

where F𝜇𝜈 = A𝜈,𝜇 − A𝜇,𝜈 is the electromagnetic tensor field, g𝜇𝜈

is a constant metric on M with signature (−,+,+,+), J𝛼 and
𝛾𝛼 ∈ 𝒞∞(M) are smooth functions (for 0 ≤ 𝛼 ≤ 3) and 𝜇0 is a
constant.[75] Notice that it is a singular Lagrangian.
The Lagrangian energy is

E = − 1
4𝜇0

g𝜇𝜈g𝛼𝛽F𝛽𝜈F𝛼𝜇 + A𝛼J
𝛼 + 𝛾𝛼s

𝛼 , (145)

and the Lagrangian 4-form is

Θ = 1
𝜇0

g𝛼𝛽g𝜇𝜈F𝛽𝜈dA𝛼 ∧ d3x𝜇 + Ed4x + ds𝜇 ∧ d3x𝜇 . (146)

As the Lagrangian is singular, we should not expect the system
to be multicontact, but it could be premulticontact if some extra
compatibility conditions are met (see B.4). To check it, we need

to compute the characteristic and Reeb distributions:

 =
⟨

𝜕

𝜕A𝜇,𝜈
+ 𝜕

𝜕A𝜈,𝜇

⟩
𝜇,𝜈=0,1,2,3

,

ℜ =
⟨

𝜕

𝜕A𝜇,𝜈
+ 𝜕

𝜕A𝜈,𝜇
, 𝜕

𝜕s𝜇

⟩
𝜇,𝜈=0,1,2,3

. (147)

We see that rank () = 10 and rank (ℜ) = 14, which are com-
patible with a space-time of dimensionm = 4 and k = 4. The last

condition holds because 𝜄
(

𝜕

𝜕s𝜇

)
Θ = d3x𝜇 . Therefore, it is a pre-

multicontact Lagrangian system. The corresponding dissipation
form is 𝜎Θ = 𝛾𝛼dx

𝛼 .
For the integral holonomic sections 𝝍 (x𝜇) =

(
x𝜇 , A𝛼(x

𝜇),

A𝛼,𝛽 (x
𝜇) = 𝜕A𝛼

𝜕x𝛽
, s𝜈(x𝜇)

)
, Equations (80) read,

⎧⎪⎪⎨⎪⎪⎩
𝜕s𝜇

𝜕x𝜇
= L ,

𝜇0J
𝜇 = g𝜈𝜎g𝜇𝛼

(
𝜕F𝜎𝛼

𝜕x𝜈
+ 𝛾𝜈F𝜎𝛼

)
.

(148)

To recover an expression which we can interpret as an
electromagnetic field in matter, we set g𝜇𝜈 = 1√

1+𝜒m
diag(

−(1 + 𝜒e)(1 + 𝜒m), 1, 1, 1
)
, where 𝜒e and 𝜒m are the electric

and magnetic susceptibilities respectively. Moreover, consider-

ing x = 0 = ct and denoting 𝛾𝜇 =
(

𝛾

c
,𝛾𝛾𝛾
)
and J𝜇 =

(
c𝜌, j

)
, the last

equation of (148) reads in vector notation as [75]

𝜌 = (1 + 𝜒e)𝜖0(∇ ⋅ E + 𝛾𝛾𝛾 ⋅ E) , (149)

j = −(1 + 𝜒e)𝜖0
(
𝜕E
𝜕t

+ 𝛾E
)
+ 1
(1 + 𝜒m)𝜇0

(∇ × B + 𝛾𝛾𝛾 × B) . (150)

When 𝛾𝜈 = 0, we recover theGauss Law (for electric fields) and the
Ampère–Maxwell Law for linear materials. The other Maxwell’s
equations, Gauss Law (for magnetic fields) and Faraday–Henry–
Lenz Law, are the same as in the non-action-dependent case since
they just state that the curvature of the connection is closed.
If J𝜇 = 0, the Lagrangian and the equations are invariant un-

der the transformation A𝜇 → A𝜇 +
𝜕f

𝜕x𝜇
, for any smooth function

f inM. To compute the dissipated quantities associated with this
gauge group, we first need the infinitesimal symmetry:

Y =
𝜕f
𝜕x𝜇

𝜕

𝜕A𝜇

+
𝜕2f

𝜕x𝜇x𝜈

(
𝜕

𝜕A𝜇𝜈

+ 𝜕

𝜕A𝜈𝜇

)
. (151)

Then, the dissipated quantity is

𝜄(Y)Θ = 1
𝜇0

g𝛼𝛽g𝜇𝜈F𝛽𝜈

𝜕f
𝜕x𝛼

d3x𝜇 = 𝜉𝜇d3x𝜇 . (152)

These are the same functions 𝜉𝜇 described in (15). The conserva-
tion laws are replaced by the so-called dissipation laws (15). The
geometric formulation using multicontact geometry is, for solu-
tions 𝜓 ,

𝜓∗d
(
𝜉𝜇 ∧ d3x𝜇

)
= 𝜓∗(𝜎Θ ∧

(
𝜉𝜇d3x𝜇

))
, (153)
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which are equivalent to the second set of field Equations (148).

5.4. Metric-Affine Gravity

Gravity is one of the first field theories where action-dependent
sources were considered. There are two promising applications.
First, to describe dark energy as a nonconservative effect pro-
duced by an action-dependent term in the Lagrangian. Sec-
ond, to describe open gravitational systems, like those emitting
gravitational waves, as an “effective” field theory that is action-
dependent.
The earliest proposal was ref. [96], adding a linear action term

to the Einstein–Hilbert action. Due to difficulties in Herglotz’s
variational principle for field theories, the model was later up-
graded in ref. [76]. This variational principle was clarified in refs.
[55, 56], where the field equations are derived geometrically to
ensure covariance. Another approach is to consider cosmology
as a dynamical system with a scaling symmetry (or dynamical
similarity).[97–99] The presence of a symmetry of this kind pro-
vides the system with a natural contact structure. For a general
approach, see ref. [81].
The metric-affine model (or Einstein–Palatini) is a first-order

singular field theory for General Relativity. Amultisymplectic for-
mulation of the model has been developed in several works (see,
for instance, refs. [87, 89, 100, 101]). The metric-affine action is
equivalent to the Einstein–Hilbert action in the final constraint
surface, after performing a gauge reduction (see ref. [89] for a
geometrical description). This property makes it an interesting
nontrivial example for action-dependent field theories.
Given the relevance of action-dependent gravity, here we

present the multicontact formalism for the metric-affine action
with a linear term in the action.

5.4.1. Lagrangian Formalism

The configuration bundle is 𝜋 : E → M, whereM is a connected
orientable 4-dimensionalmanifold representing space-time, with
volume formdenoted as𝜔 ∈ Ω4(M), and E = Σ ×M C(LM), where
Σ is themanifold of Lorentzianmetrics onM, with signature (− +
++), and C(LM) is the bundle of connections onM; that is, linear
connections in TM.
Natural coordinates (x𝜇) in M are taken such that 𝜔 =

dx0 ∧⋯ ∧ dx3 ≡ d4x. The adapted fiber coordinates in J1𝜋 are
(x𝜇 , g𝛼𝛽 ,Γ𝜈

𝜆𝛾
, g𝛼𝛽,𝜇 ,Γ𝜈

𝜆𝛾 ,𝜇), with𝜇, 𝜈, 𝛾 , 𝜆 = 0, 1, 2, 3 and 0 ≤ 𝛼 ≤ 𝛽 ≤
3. The functions g𝛼𝛽 are the components of the metric and Γ𝜈

𝜆𝛾

are the Christoffel symbols of the connection. We do not as-
sume torsionless connections and thus Γ𝜈

𝜆𝛾
≠ Γ𝜈

𝛾𝜆
, in general. Let

𝜆 = 𝜆𝜇dx
𝜇 be a 1-form ofM. The metric-affine Lagrangian is

LEP = 𝚐R − 𝜆𝜇s
𝜇 , (154)

where 𝚐 =
√| det(g𝛼𝛽 )|, R = g𝛼𝛽R𝛼𝛽 is the scalar curvature, the

components of the Ricci tensor are

R𝛼𝛽 = Γ𝛾

𝛽𝛼,𝛾 − Γ𝛾

𝛾𝛼,𝛽 + Γ𝛾

𝛽𝛼
Γ𝜎
𝜎𝛾

− Γ𝛾

𝛽𝜎
Γ𝜎
𝛾𝛼
, (155)

which depend only on the connection, and g𝛼𝛽 denotes the in-
verse matrix of g.

It is an affine Lagrangian, so we follow the general results pre-
sented in Section 4.2. We have that:

f 𝛽𝛾 ,𝜇
𝛼

= 𝜕L
𝜕Γ𝛼

𝛽𝛾 ,𝜇

= 𝚐 (𝛿𝜇
𝛼
g𝛽𝛾 − 𝛿𝛽

𝛼
g𝜇𝛾 ) , (156)

f 𝛼𝛽,𝜇 = 𝜕L
𝜕g𝛼𝛽,𝜇

= 0 , (157)

V = 𝚐 g𝛼𝛽
(
Γ𝛾

𝛽𝜎
Γ𝜎
𝛾𝛼
− Γ𝛾

𝛽𝛼
Γ𝜎
𝜎𝛾

)
+ 𝜆𝜇s

𝜇 . (158)

This Lagrangian leads to a premulticontact Lagrangian because
𝜕f 𝛽𝛾 ,𝜇𝛼

𝜕s𝜈
= 0, and it fulfills condition (92) as follows. We need two set

of functions: J𝛼𝛽,𝜇 with respect to the components of the metric
g𝛼𝛽 , and J𝛼

𝛽𝛾 ,𝜇 with respect to the components of the connection
Γ𝛼
𝛽𝛾
. Their expressions can be computed explicitly (although they

are not unique):

J𝛼𝛽,𝜇 = 1
𝚐 n(𝜌𝜎)

(
−1
2
g𝜌𝜎g𝛼𝛽𝛿

𝜏
𝛾
+ 1
6
g𝛼𝛽g𝛾𝜎𝛿

𝜏
𝜌
− 1
3
g𝛼𝛾g𝛽𝜎𝛿

𝜏
𝜌
+ g𝛽𝜎g𝛼𝜌𝛿

𝜏
𝛾

)
×

(
𝜆𝜈 f

𝜌𝜎,𝜈
𝜏

+ 𝜕V
𝜕Γ𝜏

𝜌𝜎

)
, (159)

J𝛼
𝛽𝛾 ,𝜇 = − 4

3𝚐 n(𝜌𝜎)
𝛿𝛼
𝜇

(
g𝛽𝜌g𝛾𝜎

𝜕V
𝜕g𝜌𝜎

− 1
2
g𝛽𝛾g𝜌𝜎

𝜕V
𝜕g𝜌𝜎

)
. (160)

The number n(𝜌𝜎) is 1, if 𝜌 = 𝜎, and 2, if 𝜌 ≠ 𝜎. The Lagrangian
premulticontact 4-form (25) is

Θ = −f 𝛽𝛾 ,𝜇
𝛼

dΓ𝛼
𝛽𝛾
∧ d3x𝜇 + V d4x + ds𝜇 ∧ d3x𝜇 , (161)

and 𝜎Θ = 𝜆𝜇dx
𝜇 . For a holonomic section 𝝍 : M → J1𝜋 ×M

Λm−1(T∗M)

𝝍 (x𝜈) =

(
x𝜇 , g𝛼𝛽 (x

𝜈),
𝜕g𝛼𝛽
𝜕x𝜇

(x𝜈),Γ𝛼
𝛽𝛾
(x𝜈),

𝜕Γ𝛼
𝛽𝛾

𝜕x𝜇
(x𝜇), s𝜇(x𝜈)

)
(162)

the Lagrangian Equations (44) and (45) are:

𝜕s𝜇

𝜕x𝜇
= L , (163)

𝜕V
𝜕g𝜎𝜌

−
𝜕Γ𝛼

𝛽𝛾

𝜕x𝜇
𝜕f 𝛽𝛾 ,𝜇

𝛼

𝜕g𝜎𝜌
= 0 , (164)

𝜕V
𝜕Γ𝛼

𝛽𝛾

+
∑
𝜌≤𝜎

𝜕g𝜌𝜎
𝜕x𝜇

𝜕f 𝛽𝛾 ,𝜇
𝛼

𝜕g𝜌𝜎
+ 𝜆𝜇f

𝛽𝛾 ,𝜇
𝛼

= 0 . (165)

Equation (164) has two distinct components. First, if we multiply
by

−1
3
g𝜖𝜈g𝜁𝛾𝛿

𝛼
𝛽
+ g𝜁𝛾g𝜖𝛽𝛿

𝛼
𝜈
+ 1
3
g𝜁𝜈g𝜖𝛾𝛿

𝛼
𝛽
− g𝜖𝛾g𝜁𝛽𝛿

𝛼
𝜈
, (166)

and rearrange the terms, we obtain:

t𝛼
𝛽𝛾

≡ T𝛼
𝛽𝛾
− 1
3
𝛿𝛼
𝛽
T𝜈
𝜈𝛾
+ 1
3
𝛿𝛼
𝛾
T𝜈
𝜈𝛽
, (167)
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where T𝛼
𝛽𝛾

= 1
2
(Γ𝛼

𝛽𝛾
− Γ𝛼

𝛾𝛽
). These are the torsion constraints and

have the same expression as the action-independent case.[89] As-
suming these constraints, the Equations (165) can be rewritten
as:

m𝜌𝜎,𝜇 ≡ g𝜌𝜎,𝜇 − g𝜎𝜈Γ𝜈
𝜇𝜌

− g𝜌𝜈Γ𝜈
𝜇𝜎

− 4
3
g𝜌𝜎T

𝜈
𝜈𝜇

+ g𝜌𝜎𝜆𝜇 ⇒
(
∇Γg

)
𝜌𝜎,𝜇

= 4
3
g𝜌𝜎T

𝜈
𝜈𝜇

− g𝜌𝜎𝜆𝜇 , (168)

which can be considered as a nonmetricity condition.
The covariant constraint algorithm requires us to compute

the tangency conditions in all space-time directions. These are
given by semiholonomic locally decomposable multivector fields
X ∈ 𝖷m(J1𝜋) whose integral sections are the solutions of the
field equations. In this case,

X =
3⋀

𝜇=0
X𝜇

=
3⋀

𝜇=0

(
𝜕

𝜕x𝜇
+ g𝛼𝛽,𝜇

𝜕

𝜕g𝛼𝛽
+ X𝛼𝛽𝜈,𝜇

𝜕

𝜕g𝛼𝛽,𝜈
+ Γ𝛼

𝛽𝛾 ,𝜇
𝜕

𝜕Γ𝛼
𝛽𝛾

+X𝛼
𝛽𝛾𝜈,𝜇

𝜕

𝜕Γ𝛼
𝛽𝛾 ,𝜈

+ X 𝜈
𝜇

𝜕

𝜕s𝜈

)
, (169)

where X𝛼𝛽𝜈,𝜇 , X
𝛼
𝛽𝛾𝜈,𝜇 and X 𝜈

𝜇
are smooth functions of J1𝜋 ×M

Λm−1(T∗M). The tangency condition on the constraints leads to

0 = X𝜇(t
𝛼
𝛽𝛾
) = T𝛼

𝛽𝛾 ,𝜇 −
1
3
𝛿𝛼
𝛽
T𝜈
𝜈𝛾 ,𝜇 +

1
3
𝛿𝛼
𝛾
T𝜈
𝜈𝛽,𝜇 , (170)

0 = X𝜏 (m𝜌𝜎,𝜇) = X𝜌𝜎𝜇,𝜏 − g𝜎𝜈,𝜏Γ𝜈
𝜇𝜌

− g𝜎𝜈Γ𝜈
𝜇𝜌,𝜏 − g𝜌𝜈,𝜏Γ𝜈

𝜇𝜎
− g𝜌𝜈Γ𝜈

𝜇𝜎,𝜏

− 4
3
g𝜌𝜎,𝜏T

𝜈
𝜈𝜇

− 4
3
g𝜌𝜎T

𝜈
𝜈𝜇,𝜏 + g𝜌𝜎,𝜏𝜆𝜇 + g𝜌𝜎

𝜕𝜆𝜇

𝜕x𝜏
.

(171)

The first set of equations are new constraints. The subsequent
tangency condition is:

0 = X𝜏 (X𝜇(t
𝛼
𝛽𝛾
))

= 1
2

(
X𝛼
𝛽𝛾𝜇,𝜏 − X𝛼

𝛾𝛽𝜇,𝜏

)
+ 1
6

(
𝛿𝛼
𝛽
X 𝜈
𝜈𝛾𝜇,𝜏 − X 𝜈

𝛾𝜈𝜇,𝜏 + 𝛿𝛼
𝛾
X 𝜈
𝜈𝛽𝜇,𝜏 − 𝛿𝛼

𝛾
X 𝜈
𝛽𝜈𝜇,𝜏

)
, (172)

which are not constraints.
It is well-known that the trace of the torsion of the connection

is a gauge freedom of the Metric-Affine gravity (see, for instance,
refs. [89, 102]). We can fix the gauge condition T𝜈

𝜈𝜇
= 3

4
𝜆𝜇 , so that

the metricity condition (170) holds, although the connection is
not traceless. Alternatively, we can impose a torsionless connec-
tion, and the constraint (170) becomes:(
∇Γg

)
𝜌𝜎,𝜇

= −𝜆𝜇g𝜌𝜎 , (173)

which can be thought of as a dissipation law for the components
of the metric. Here ∇Γ denotes the covariant derivative gener-

ated by the connection Γ. In particular, if 𝜆 ≠ 0, the connection
Γ is not the Levi-Civita connection of g. This fact signals that,
in the action-dependent case, one cannot generically recover the
Einstein–Hilbert Lagrangian from the metric-affine one, as it is
the case when 𝜆 vanishes.[89]

To investigate this point, we compare the other Equation (164)
and the equations derived from the Einstein–Hilbert Lagrangian.
Denote by R(Γ), R(g) the Ricci tensor of the connection Γ and of
the metric g respectively. After minor algebraic effort, one can
see that Equation (164) is equivalent to R(Γ)𝛼𝛽 = 0. Imposing, for
instance, thatT𝜈

𝜈𝜇
= 0, and considering the case where 𝜆 is closed,

it can also be written as:

0 =R(Γ)𝛼𝛽 = R(g)𝛼𝛽

− 1
2

(
∇g

𝛽
𝜆𝛼 + ∇g

𝛼
𝜆𝛽 + g𝛼𝛽g

𝜌𝜎∇g
𝜎
𝜆𝜌 − 𝜆𝛼𝜆𝛽 + g𝛼𝛽g

𝜌𝜎𝜆𝜌𝜆𝜎

)
,

(174)

where ∇g is the covariant derivative generated by the Levi-Civita
connection of g. This equation is different from the one de-
rived from the Einstein–Hilbert Lagrangianwith the same action-
dependent term:[55,76]

R(g)𝛼𝛽−
1
2

(
∇g

𝛽
𝜆𝛼 + ∇g

𝛼
𝜆𝛽 + g𝛼𝛽g

𝜌𝜎∇g
𝜎
𝜆𝜌 + 2𝜆𝛼𝜆𝛽 + g𝛼𝛽g

𝜌𝜎𝜆𝜌𝜆𝜎

)
= 0 , (175)

at least in the points where T𝜈
𝜈𝜇

= 0. Thus, in general, the action-
dependent metric–affine gravity is not equivalent to the action-
dependent Einstein–Hilbert gravity, in the sense that the set of
metrics that are solutions to the field equations is different.
An interpretation of this nonequivalence is the following. The

metric-affine formulation has more solutions than the Einstein–
Hilbert one, but it also contains a gauge symmetry. Each equiv-
alent class of solutions contains exactly one solution of the
Einstein–Hilbert field equations, and every solution to the latter
is inside one equivalence class of the former. The gauge fixing
that recovers this solution is the vanishing of the trace of the tor-
sion, as already noticed by Einstein.[88] When we add an action-
dependent term in the metric-affine Lagrangian that is no longer
the case: in a class of solutions of themetric-affine Lagrangian, in
general there is no solution to the Einstein–Hilbert Lagrangian
with the same action-dependent term.

5.4.2. Hamiltonian Formalism

As it is explained in Section 4.2.2, the Legendre map induces the
following relations on the multimomenta:

p𝛽𝛾 ,𝜇
𝛼

= 𝜕L
𝜕Γ𝛼

𝛽𝛾 ,𝜇

= 𝚐(𝛿𝜇
𝛼
g𝛽𝛾 − 𝛿𝛽

𝛼
g𝜇𝛾 ) , p𝛼𝛽,𝜇 = 𝜕L

𝜕g𝛼𝛽,𝜇
= 0 . (176)

These are restrictions that determine all the multimomenta as
functions of the positions and define locally the submanifold
∗ ⊂  . Therefore, we can use (x𝜇, g𝛼𝛽 ,Γ𝛼

𝛽𝛾
, s𝜇) as coordinates on

∗. TheHamiltonian 4-formΘ0 has the same local expression as
the Lagrangian one. The equations in coordinates are the same

Fortschr. Phys. 2025, 73, e70000 © 2025 Wiley-VCH GmbHe70000 (17 of 25)

 15213978, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.70000 by U

niversidad A
utonom

a D
e M

adrid, W
iley O

nline L
ibrary on [26/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

as in the Lagrangian case, but now the velocities are not coor-
dinates of the system. The torsion constraint is also present in
the Hamiltonian formalism, as it is projectable by the Legendre
map. Furthermore, the nonmetricity condition becomes an equa-
tion of motion.

5.5. Burgers’ Equation from the Heat Equation

Burgers’ equation[103] is a remarkable nonlinear partial differen-
tial equation.[93] It appears in appliedmathematics, physics, fluid
dynamics, etc. It reads

𝜕u
𝜕t

+ u𝜕u
𝜕x

= k𝜕
2u

𝜕x2
, (177)

where t, x are the independent variables, u = u(t, x) is the depen-
dent variable, and k ≥ 0 is a diffusion coefficient. Burgers’ equa-
tion is closely related to the heat equation,

𝜕u
𝜕t

= k𝜕
2u

𝜕x2
, (178)

In this example we see that Burgers’ equation can be obtained as
a contactification of the heat equation (see also ref. [58]).

5.5.1. Lagrangian Formalism

Before contactifying the heat equation, we need a Lagrangian or
Hamiltonian formulation of the heat equation. It is well known
that the heat equation is not variational. However, it can be made
variational by introducing an additional dependent variable v.
The configuration bundle is 𝜋 : E → ℝ2, where the coordinates
in ℝ2 and E are (t, x) and (t, x; u, v), respectively. The phase bun-
dle J1𝜋 has coordinates (t, x; u, v, ut, ux, vt, vx). Consider the La-
grangian function L◦ ∈ 𝒞∞(J1𝜋) given by

L◦ = −kuxvx −
1
2
(vut − uvt) , (179)

whose Euler–Lagrange equations read

𝜕u
𝜕t

− k𝜕
2u

𝜕x2
= 0 , 𝜕v

𝜕t
+ k 𝜕

2v
𝜕x2

= 0 , . (180)

Since the second equation is linear homogeneous, it always has
solutions, i.e. v = 0. Thus, there is a one-to-one correspondence
between the solutions to the heat Equation (178) and the solu-
tions to the Euler–Lagrange Equations (180) with v = 0.
To perform the contactification, consider the fiber bundle

𝜏 :  → ℝ2, with adapted coordinates (t, x; u, v, ut, ux, vt, vx, s
t, sx),

𝜔 = dt ∧ dx, and the singular Lagrangian function L ∈ 𝒞∞()
given by

L = L◦ − 𝛾usx , (181)

where L◦ is the Lagrangian function given in (179) and 𝛾 ∈ ℝ is a
constant. Note that we have added a term that, unlike in previous
examples, is not of the simple form 𝛾𝜇(x

𝜈)s𝜇. This additional term

will give rise to the nonlinear term in the Burgers’ equation. The
Lagrangian energy is

E = −kuxvx + 𝛾usx , (182)

and the Lagrangian 2-form (25) is

Θ = − kvxdu ∧ dt − kuxdv ∧ dt +
1
2
vdu ∧ dx − 1

2
udv ∧ dx

+ (−kuxvx + 𝛾usx)dt ∧ dx + dst ∧ dx − dsx ∧ dt , (183)

and 𝜎Θ = 𝛾udx. Note that (Θ,𝜔) define a 2-premulticontact
structure on  with

 =
⟨

𝜕

𝜕ut
, 𝜕

𝜕vt

⟩
, Dℜ =

⟨
𝜕

𝜕ut
, 𝜕

𝜕vt
, 𝜕

𝜕st
, 𝜕

𝜕sx

⟩
.

For holonomic sections 𝝍 (t, x) = (t, x, u(t, x), v(t, x), 𝜕u
𝜕t
(t, x), 𝜕u

𝜕x

(t, x), 𝜕v
𝜕t
(t, x), 𝜕v

𝜕x
(t, x), st(t, x), sx(t, x)), the Herglotz–Euler–

Lagrange Equations (44) and (45) are:

𝜕u
𝜕t

− k𝛾u𝜕u
𝜕x

= k𝜕
2u

𝜕x2
,

𝜕v
𝜕t

+ k𝛾u 𝜕v
𝜕x

= −k 𝜕
2v

𝜕x2
+ 𝛾sx , 𝜕st

𝜕t
+ 𝜕sx

𝜕x
= L . (184)

Note that there exists a correspondence between the so-
lutions to Burgers’ Equation (177) and the solutions(
u, v, 𝜕u

𝜕t
, 𝜕u
𝜕x

, 𝜕v
𝜕t
, 𝜕v
𝜕x

, st, sx
)

to the Herglotz–Euler–Lagrange

Equations (184) for the Lagrangian (181), with 𝛾 = − 1
k
, v = sx = 0

and 𝜕st

𝜕t
= L.

It is important to highlight that, although the Lagrangian (181)
is singular, no compatibility constraints arise from the Herglotz–
Euler–Lagrange equations.

5.5.2. Hamiltonian Formalism

We have provided a Lagrangian formulation for both the heat
equation and Burgers’ equation. Now, we develop the Hamilton–
de Donder–Weyl formalism to the Lagrangian L defined in (181).
The Legendre map associated with the Lagrangian L is the map

L(t, x; u, v, ut, ux, vt, vx, st, sx)= (t, x; u, v, pt, px, qt, qx, st, sx), (185)

where,

pt = 𝜕L
𝜕ut

= −1
2
v , px = 𝜕L

𝜕ux
= −kvx , qt = 𝜕L

𝜕vt
= 1
2
u ,

qx = 𝜕L
𝜕vx

= −kux . (186)

Hence, the image of the Legendre map ∗
0 = L() is given by

the two constraints

pt + 1
2
v = 0 , qt − 1

2
u = 0 , (187)
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and the Lagrangian function L is almost-regular. We use coordi-
nates (t, x; u, v, px, qx, st, sx) on ∗

0 . Hence, the Hamiltonian on ∗
0

is

H0 = −1
k
pxqx + 𝛾usx . (188)

The Hamiltonian 2-form (58) is

Θ0 = pxdu ∧ dt + qxdv ∧ dt + 1
2
vdu ∧ dx − 1

2
udv ∧ dx

+
(
−1
k
pxqx + 𝛾usx

)
dt ∧ dx + dst ∧ dx − dsx ∧ dt . (189)

Note that (Θ0 ,𝜔) define a 2-multicontact structure on
∗
0 . We have 𝜎Θ0 = 𝛾 udx. For integral sections 𝝍 (t, x) =

(t, x, u(t, x), v(t, x), px(t, x), qx(t, x), st(t, x), sx(t, x)), the Herglotz–
Hamilton–de Donder–Weyl Equations (55) for this Hamiltonian:

𝜕v
𝜕t

=
𝜕px

𝜕x
+ 𝛾(sx + upx) , 𝜕u

𝜕t
= −

𝜕qx

𝜕x
− 𝛾uqx ,

𝜕u
𝜕x

= − 1
k
qx , 𝜕v

𝜕x
= −1

k
px , (190)

𝜕st

𝜕t
+

𝜕sx
𝜕x

= px 𝜕u
𝜕x

+ qx 𝜕v
𝜕x

− 1
2
v𝜕u
𝜕t

+ 1
2
u𝜕v
𝜕t

+ 1
k
pxqx − 𝛾usx ,

(191)

and there are no compatibility constraints. Combining the first
four equations, we obtain

𝜕u
𝜕t

− 𝛾ku𝜕u
𝜕x

= k𝜕
2u

𝜕x2
, (192)

𝜕v
𝜕t

+ 𝛾ku 𝜕v
𝜕x

= −k 𝜕
2v

𝜕x2
+ 𝛾sx . (193)

If we set the value of the constant 𝛾 to be 𝛾 = −1
k
, Equation (192)

becomes Burgers’ equation (177).
Note that Equation (191) admits solutions (u, v, px, qx, st, sx)

with u being a solution to Burgers’ Equation (177), v = px = st =
sx = 0, and qx = −k𝜕u

𝜕x
. As in the Lagrangian counterpart, no

compatibility constraints arise.

Remark 5.2. The heat equation can also be described via a Hamil-
tonian formalism by taking the Legendremap associated with the
Lagrangian (179).

6. Summary and Outlook

We have presented a multilayered introduction to action-
dependent field theories. In a friendly presentation, we have dis-
cussed the interpretation of the “action-variables” and the field
equations for regular Lagrangians (6) and Hamiltonians (12).
Necessitated by the intricacies of physically-motivated field

theories, we have provided a quick presentation of the geomet-
ric framework underlying action-dependent field theory: multi-
contact geometry.[52] Geometric formulations are powerful tech-
niques to study field theories, especially when they are not regular
and/or symmetries are involved. Using the multicontact formal-
ism, we have reviewed how to compute the dynamics of regular

and singular Lagrangians. We have also shown how to construct
the associated Hamiltonian formalism and how to apply the con-
straint algorithm.
We have developed a large collection of examples, illustrating

how to derive the field equations and how to use the geomet-
ric structures. Both the Lagrangian and Hamiltonian approaches
have been computed. The examples have been selected to show-
case the influence of action-dependent terms on prototypical La-
grangians in physics.
First, we have studied the generic cases of field theories de-

scribed by quadratic (regular and singular) Lagrangians, and by
affine Lagrangians. Second, we have analyzed some well-known
theories for which the standard Lagrangians have been modified
by adding terms depending on the “action variables”. In particu-
lar, we have considered two regular systems: the one-dimensional
wave equation and the Klein–Gordon equation (and the teleg-
rapher equation as a particular case), and three singular ones:
Metric-affine gravity, Maxwell’s electromagnetism, and the Burg-
ers equation obtained from the heat equation. (Two additional
examples are discussed in the following appendix: the Bosonic
string and (2 + 1)-dimensional gravity and Chern–Simons equa-
tion.)
In the context of action-dependent field theories, the examples

of metric-affine gravity, bosonic string, Chern–Simons, as well
as the generic cases of quadratic and affine Lagrangians are new
in the literature. The Klein–Gordon equation and Burger’s equa-
tionwere studied previously in the action-dependent context (see,
for instance, refs. [94] and [58] respectively), but here we have
described them using the multicontact formalism for the first
time. All in all, this work represents the largest increase of new
instances of action-dependent field theories so far.
The examples have been chosen to explore the behavior of

action-dependent field theories. For instance, we observe that
action-dependent terms have an intricate influence in General
Relativity and produce new terms in the field equations that can-
not be obtained by other kinds of particles. We have shown how
equivalent Lagrangians lead to different field equations when an
action-dependent term is added. Moreover, the nonconservative
behavior of these theories makes them suitable for modeling
open gravitational systems. These considerations make action-
dependent gravity a promising field of research.
The study of the symmetries, with their associated dissipated

quantities, remains a topic of great interest. The reduction of
symmetries is currently being developed for dissipative mechan-
ical systems,[104] but no similar procedure exists in the context of
multicontact geometry yet. Another interesting object is the scal-
ing symmetry or dynamical similarity. The recent work[81] points
out that usual systems with this special symmetry benefit from a
description using contact geometry.
On a more topological note, the “action variables” provide a

connection between the boundary and the bulk. One can fore-
shadow that the boundary terms play an important role in action-
dependent field theories. Moreover, the dissipation form, that en-
codes the nonconservation, has a strong link to the cohomology
of the manifold. How these elements relate to each other and
their effects on the dynamics remain to be scrutinized.
Another open problem of the multicontact framework of

action-dependent classical field theory is developing an space-
time split formalism. This will provide a Hamiltonian formula-
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tion more akin to the commonly used one in theoretical physics.
This approach will be presented in a future work.
Finally, multiple properties of multicontact geometry remain

to be studied. To highlight two, Legendre submanifolds and the
graded Jacobi algebra, which will pave the way to stronger geo-
metric theorems to characterize action-dependent field theories.

Appendix A: Other Applications

In this appendix, we analyze two other interesting physical the-
ories modified with action-dependent terms, whose multicon-
tact treatment is similar to some of the cases previously stud-
ied. These are the Bosonic string, which is a regular theory, and
the (2 + 1)-dimensional gravity and the Chern–Simons equation,
which is another affine (and then singular) case.

A.1. Bosonic String Theory

The multisymplectic formulation of the bosonic string has been
recently developed in refs. [73, 74, 91]. See ref. [105] for more
details on string theory. In this theory, space-time is a (d + 1)-
dimensional manifoldM endowed with a space-time metric G𝜇𝜈

with signature (− +⋯+). Local coordinates on M are x𝜇 (𝜇 =
0, 1,… , d). The string worldsheet Σ is a 2-dimensional manifold,
with local coordinates 𝜎a, with a = 0, 1, which is endowed with
the volume form 𝜔 = d2𝜎. The fields x𝜇(𝜎) are scalar fields on Σ
given by the embedding maps Σ → M : 𝜎a → x𝜇(𝜎). Hence, the
configuration bundle is 𝜋 : E = Σ ×M → Σ and its sections are
𝜙 : Σ → Σ ×M : 𝜎a → (𝜎a, x𝜇(𝜎)). The Lagrangian and Hamilto-
nian phase bundles J1𝜋 → Σ and J1∗𝜋 → Σ have local coordinates
(𝜎a, x𝜇 , x𝜇a ) and (𝜎a, x𝜇 , pa

𝜇
), respectively. On J1𝜋 we also have a 2-

form g = 1
2
gabd𝜎

a ∧ d𝜎b, whose pullback by jet prolongations of

sections j1𝜙(𝜎a) =
(
𝜎a, x𝜇(𝜎a), 𝜕x

𝜇

𝜕𝜎a
(𝜎a)

)
gives the induced metric

on Σ,

(j1𝜙)∗g = h ≡ 1
2
habd𝜎

a ∧ d𝜎b , where hab = G𝜇𝜈

𝜕x𝜇

𝜕𝜎a

𝜕x𝜈

𝜕𝜎b
.

(194)

The bosonic string theory is described by the Nambu–Goto La-
grangian,

L0 = −T
√
− det g = −T

√
− det(G𝜇𝜈x

𝜇
a x𝜈b ) , (195)

where T is a constant called the string tension. This Lagrangian is
regular since

𝜕2L0
𝜕x𝜇a 𝜕x𝜈b

= −T
√
− det g

[
G𝜇𝜈g

ba −G𝜇𝛼G𝜌𝜈x
𝛼
c x

𝜌

d

(
gbagcd + gbcgad − gcagbd

)]
,

(196)

where gba ≡ (g−1)ba = 1
det g

𝜖bc𝜖adgdc, is a regular matrix every-

where. Then, the Legendre map, which is a diffeomorphism, al-
lows us to translate the 2-form g to J1∗𝜋 as ◦∗g = g ∈ Ω2(J1∗𝜋).

A.1.1. Lagrangian Formalism: For this theory, the bundle 𝜏 :
 ≃ J1𝜋 ×ℝ2 → Σ has adapted coordinates (𝜎a, x𝜇 , x𝜇a , sa). The
contactified Lagrangian function L ∈ 𝒞∞() we propose is
L(𝜎a, x𝜇 , x𝜇a , s

a)

= L0(𝜎
a, x𝜇, x𝜇a ) + 𝛾as

a = −T
√

− det(G𝜇𝜈x
𝜇
a x𝜈b ) + 𝛾as

a

= −T
√
− det g + 𝛾as

a , (197)

where 𝛾 ≡ (𝛾a) ∈ ℝ2 is a constant vector, and it is a regular La-
grangian function. The Lagrangian energy is

E ≡ 𝜕L
𝜕x𝜇a

x𝜇a − L = −T
√
− det g (gbagab − 1) − 𝛾as

a

= −T
√
− det g − 𝛾as

a ∈ 𝒞∞() , (198)

where the last equality follows because gab is a 2 × 2 matrix in the
case of the string. The Lagrangian multicontact 2-form (25) is

Θ = 𝜕L
𝜕x𝜇a

dx𝜇 ∧ d1𝜎a − E d2𝜎 + dsa ∧ d1𝜎a

= −T
√
− det g G𝜇𝜈g

bax𝜈bdx
𝜇 ∧ d1𝜎a

−
(
T
√
− det g + 𝛾as

a
)
d2𝜎 + dsa ∧ d1𝜎a , (199)

where d1𝜎a = 𝜄
(

𝜕

𝜕𝜎a

)
d2𝜎. In this case, we have 𝜎Θ = −𝛾ad𝜎a.

For holonomic sections 𝝍 (𝜎) =
(
𝜎a, x𝜇(𝜎), 𝜕x

𝜇

𝜕𝜎a
(𝜎), sa(𝜎)

)
the

Lagrangian Equations (41) and (42) lead to

𝜕sa

𝜕𝜎a
= L , (200)

T
√
− det g G𝜇𝜈g

ba𝛾a
𝜕x𝜈

𝜕𝜎b

= 𝜕x𝜌

𝜕𝜎a

[
𝜕

𝜕x𝜌

(√
− det g G𝜇𝜈g

ba 𝜕x𝜈

𝜕𝜎b

)
− 𝜕

𝜕x𝜇

(√
− det g G𝜌𝜈g

ba 𝜕x𝜈

𝜕𝜎b

)]
+
√
− det g

[
G𝜇𝜈g

ba −G𝜇𝛼G𝛽𝜈

(
gbagcd + gcbgad − gcagbd

)𝜕x𝛼
𝜕𝜎c

𝜕x𝛽

𝜕𝜎d

]

× 𝜕2x𝜈

𝜕𝜎a𝜕𝜎b
+
[
1
2

√
− det g gba

𝜕G𝛼𝛽

𝜕x𝜇
𝜕x𝛼

𝜕𝜎a
𝜕x𝛽

𝜕𝜎b

+ 𝜕

𝜕𝜎a

(√
− det g G𝜇𝜈g

ba 𝜕x𝜈

𝜕𝜎b

)]
. (201)

where (201) are theHerglotz–Euler–Lagrange Equations (44) and
(45) which, using (194) and after some nontrivial calculations,
can be written as

T
√
− det g G𝜇𝜈g

ba𝛾a
𝜕x𝜈

𝜕𝜎b
= −

√
− det h hba

𝜕G𝛼𝛽

𝜕x𝜇
𝜕x𝛼

𝜕𝜎a

𝜕x𝛽

𝜕𝜎b

+ 𝜕

𝜕𝜎a

(√
− det hG𝜇𝜈h

ba 𝜕x𝜈

𝜕𝜎b

)
+ 𝜕

𝜕x𝜌

(√
− det hG𝜇𝜈h

ba 𝜕x𝜈

𝜕𝜎b

)
𝜕x𝜌

𝜕𝜎a
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+
√
− det h

[
G𝜇𝜈h

ba −G𝜇𝛼G𝛽𝜈

(
hbahcd + hcbhad − hcahbd

)
×𝜕x𝛼

𝜕𝜎c

𝜕x𝛽

𝜕𝜎d

]
𝜕2x𝜈

𝜕𝜎a𝜕𝜎b
.

A.1.2. Hamiltonian Formalism: The Hamiltonian formalism
is developed starting from the Legendre map,  :  → ∗,
which is

∗𝜎a = 𝜎a , ∗x𝜇 = x𝜇 , ∗pa
𝜇
= −T

√
− det g G𝜇𝜈g

bax𝜈b .

(203)

This Legendre map is invertible as expected from the regularity
of the Hessian matrix (196). The Hamiltonian function is

H(𝜎a, x𝜇 , pa
𝜇
, sa) ≡ pa

𝜇
(−1)∗x𝜇a − (−1)∗L ∈ 𝒞∞(∗) . (204)

Introducing the matrix Π whose components are Πab ≡ G𝜇𝜈pa
𝜇
pb
𝜈
,

then

∗Πab = −T2 det g gba ⇐⇒ ∗ detΠ

= (−T2 det g)2 det(g−1) = T4 det g , (205)

from which it follows that (−1)∗x𝜈b = − 1
T

√
− detΠ G𝜇𝜈Πabp

a
𝜇
,

and the Hamiltonian function can be written as

H(𝜎a, x𝜇 , pa
𝜇
, sa) = − 1

T

√
− detΠ − 𝛾as

a . (206)

where Πab =
1

detΠ
𝜖cb𝜖daΠcd.

The multicontact Hamiltonian 2–form is

Θ = pa
𝜇
dx𝜇 ∧ d1𝜎a −H d2𝜎 = pa

𝜇
dx𝜇 ∧ d1𝜎a

+
( 1
T

√
− detΠ + 𝛾as

a
)
d2𝜎 , (207)

and 𝜎Θ = −𝛾a d𝜎a. For sections 𝝍 (𝜎b) = (𝜎a, x𝜇(𝜎b), pa
𝜇
(𝜎b),

sa(𝜎b)) the field equations become

𝜕sa

𝜕𝜎a
=
√
− detΠ
T

(
1 − ΠbaG

𝜇𝜈pa
𝜇
pb
𝜈

)
+ 𝛾as

a

=
√
− detΠ
T

(
1 − ΠbaΠab

)
+ 𝛾as

a , (208)

𝜕x𝜇

𝜕𝜎a
= −

√
− detΠ
T

ΠbaG
𝜇𝜈pb

𝜈
, (209)

𝜕pa
𝜇

𝜕𝜎a
=
√
− detΠ
2T

Πba
𝜕G𝜌𝛼

𝜕x𝜇
pa
𝜌
pb
𝛼
+ 𝛾ap

a
𝜇
, (210)

which are the corresponding Herglotz–Hamilton–De Donder–
Weyl equations for the bosonic string. As usual, the Legendre
map allows us to transform these equations into (200) and (201)
along with the holonomy condition and thus the Lagrangian and
Hamiltonian formalisms are equivalent.

A.2. (2 + 1)-dimensional Gravity Chern–Simons Equation

See refs. [73, 91] for the multisymplectic formulation of this the-
ory. Gravity with cosmological constant 𝜆 in a 2 + 1-dimensional
space-time M is developed in the tetrad formalism using the
vierbein ea

𝜇
given by g𝜇𝜈 = ea

𝜇
eb
𝜈
𝜂ab (𝜇 = 0, 1, 2, a = 0, 1, 2), and the

Hodge dual spin connection 𝜔a
𝜇
= 1

2
𝜖abc𝜔𝜇bc, which are treated as

the variational fields of the theory as in ref. [106].
A.2.1. Lagrangian Formalism: The configuration bundle 𝜋 :

E → M has coordinates (x𝜇 , ea
𝜇
,𝜔c

𝜌
). The multicontact Lagrangian

formalism is established on the space  = J1𝜋 ×M Λ2(T∗M), with
coordinates (x𝜇, ea

𝜇
, 𝜔c

𝜌
, ea

𝜎,𝜇, 𝜔
c
𝜎,𝜌, s

𝛼) such that the volume form
is 𝜔 = dx0 ∧ dx1 ∧ dx2. The Lagrangian of the Chern–Simons
theory[106] with a linear dissipation term is given by

L(x𝜇 , ea
𝜇
,𝜔c

𝜌
, ea

𝜎,𝜇,𝜔
c
𝜎,𝜌, s

𝛼)

= 2𝜖𝜇𝜈𝜌𝜂ace
a
𝜇
𝜔c

𝜈,𝜌 + 𝜖𝜇𝜈𝜌𝜖abc

(
ea
𝜇
𝜔b

𝜈
𝜔c

𝜌
+ 1
3
𝜆ea

𝜇
eb
𝜈
ec
𝜌

)
− 𝛾𝛼s

𝛼 , (211)

which is an affine Lagrangian, where 𝜆 is the cosmological con-
stant and 𝛾a ∈ ℝ. The Lagrangian energy is

E = −𝜖𝜇𝜈𝜌𝜖abc
(
ea
𝜇
𝜔b

𝜈
𝜔c

𝜌
+ 1
3
𝜆ea

𝜇
eb
𝜈
ec
𝜌

)
+ 𝛾𝛼s

𝛼 , (212)

the Lagrangian 2-form (25) is

Θ = 2𝜖𝜇𝜈𝜌𝜂ace
a
𝜇
d𝜔c

𝜌
∧ d2x𝜈

+
[
−𝜖𝜇𝜈𝜌𝜖abc

(
ea
𝜇
𝜔b

𝜈
𝜔c

𝜌
+ 1
3
𝜆ea

𝜇
eb
𝜈
ec
𝜌

)
+ 𝛾𝛼s

𝛼
]
d3x

+ds𝜇 ∧ dm−1x𝜇 , (213)

which is a premulticontact form, and now 𝜎Θ = 𝛾𝜇dx
𝜇 .

We can derive directly the equations of motion for multivector
fields using the derived equations for affine Lagrangians (97) and
(98). We have two sets of variables, the vierbein ea

𝜇
and the spin

connection𝜔a
𝜇
. So, we have the semiholonomicmultivector fields

on  expressed as

X =
2⋀

𝜎=0
X𝜎

=
2⋀

𝜎=0

(
𝜕

𝜕x𝜎
+ ea

𝜇,𝜎
𝜕

𝜕ea
𝜇

+ 𝜔c
𝜈,𝜎

𝜕

𝜕𝜔c
𝜈

+ Fa
𝜇𝜌𝜎

𝜕

𝜕ea
𝜇,𝜌

+Gc
𝜈𝜌𝜎

𝜕

𝜕𝜔c
𝜈,𝜌

+ X𝜇
𝜎

𝜕

𝜕s𝜇

)
. (214)

Then, the Lagrangian field Equations (41) and (42) are

X𝜇
𝜇
= L , (215)

𝜁1
𝜇
a ≡ 𝜖𝜇𝜈𝜌

[
𝜂ac𝜔

c
𝜈,𝜌 +

1
2
𝜖abc

(
𝜔b

𝜈
𝜔c

𝜌
+ 𝜆eb

𝜈
ec
𝜌

)]
= 0 , (216)

𝜁2
𝜈
c ≡ 𝜖𝜇𝜈𝜌

[
𝜂ace

a
𝜇,𝜌 − 𝜖abce

a
𝜇
𝜔b

𝜌
− 𝛾𝜌𝜂ace

a
𝜇

]
= 0 . (217)
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The two last equations are constraints because they do not de-
pend on the second derivatives of the fields, and they define the
submanifold 1 ⊂  . The tangency conditions are:
X𝜎(𝜁1

𝜇
a ) = 𝜖𝜇𝜈𝜌

[
𝜂acG

c
𝜈,𝜌𝜎 + 𝜖abc

(
𝜔b

𝜈
𝜔c

𝜌,𝜎 + 𝜆eb
𝜈
ec
𝜌,𝜎

)]|||1 = 0 , (218)

X𝜎(𝜁2
𝜈
c ) = 𝜖𝜇𝜈𝜌

[
𝜂acF

a
𝜇,𝜌𝜎 − 𝜖abce

a
𝜇,𝜎𝜔

b
𝜌
− 𝜖abce

a
𝜇
𝜔b

𝜌,𝜎

−
𝜕𝛾𝜌

𝜕x𝜎
𝜂ace

a
𝜇
− 𝛾𝜌𝜂ace

a
𝜇,𝜎

] |||1 = 0. (219)

These are compatible equations for Fe
a
𝜇,𝜌𝜎 and F𝜔

c
𝜈,𝜌𝜎 , so the con-

straint algorithm finishes.
For the holonomic sections

𝝍 (x𝜇) =
(
x𝜇, ea

𝜇
(x𝜇),𝜔c

𝜌
(x𝜇),

𝜕ea
𝜎

𝜕x𝜇
(x𝜇),

𝜕𝜔c
𝜎

𝜕x𝜌
(x𝜇), s𝛼(x𝜇)

)
(220)

of X, the Equations (215) become:

𝜕s𝜇

𝜕x𝜇
= L , 𝜁1

𝜇
a (𝜓) = 0 , 𝜁2

𝜈
c (𝜓) = 0 . (221)

As expected, the last two equations are constraints. The tangency
conditions lead to the following equations for sections:

𝜖𝜇𝜈𝜌

[
𝜂ac

𝜕2𝜔c
𝜈

𝜕x𝜌𝜕x𝜎
+ 𝜖abc

(
𝜔b

𝜈

𝜕𝜔c
𝜌

𝜕x𝜎
+ 𝜆eb

𝜈

𝜕ec
𝜌

𝜕x𝜎

)]|||1 = 0 , (222)

𝜖𝜇𝜈𝜌

[
𝜂ac

𝜕2ea
𝜇

𝜕x𝜌𝜕x𝜎
− 𝜖abc

𝜕ea
𝜇

𝜕x𝜎
𝜔b

𝜌
− 𝜖abce

a
𝜇

𝜕𝜔b
𝜌

𝜕x𝜎

−
𝜕𝛾𝜌

𝜕x𝜎
𝜂ace

a
𝜇
− 𝛾𝜌𝜂ac

𝜕ea
𝜇

𝜕x𝜎

] |||1 = 0 . (223)

A.2.2. Hamiltonian Formalism: For the multicontact Hamil-
tonian formalism we have ∗ = J1∗𝜋 ×M Λ2(T∗M), with coordi-
nates (x𝜇 , ea

𝜇
, 𝜔c

𝜌
, p𝜇𝜎a , 𝜋c

𝜈𝜌
, s𝛼). The image of the Legendre trans-

formation leads to the following constraints:

p𝜇𝜎a = 𝜕L
𝜕ea

𝜇,𝜎

= 0 , 𝜋𝜈𝜌
c = 𝜕L

𝜕𝜔c
𝜈,𝜌

= 2𝜖𝜇𝜈𝜌𝜂ace
a
𝜇
. (224)

These constraints define a submanifold ∗
0 ⊂ ∗ and, as they are

lineal relationships of the fields, the Lagrangian is almost-regular.
Moreover, as they do not depend on s𝜇 , we can use the coordinates
(x𝜇 , ea

𝜇
,𝜔c

𝜈
, s𝜇) on ∗

0 .
The Hamiltonian function is

H0 = −𝜖𝜇𝜈𝜌𝜖abc
(
ea
𝜇
𝜔b

𝜈
𝜔c

𝜌
+ 1
3
𝜆ea

𝜇
eb
𝜈
ec
𝜌

)
+ 𝛾𝛼ds

𝛼 , (225)

the Hamiltonian 3-form is

Θ0 = 2𝜖𝜇𝜈𝜌𝜂ace
a
𝜇
d𝜔c

𝜌
∧ d2x𝜈

−
[
𝜖𝜇𝜈𝜌𝜖abc

(
ea
𝜇
𝜔b

𝜈
𝜔c

𝜌
+ 1
3
𝜆ea

𝜇
eb
𝜈
ec
𝜌

)
− 𝛾𝛼ds

𝛼
]
d3x

+ ds𝜇 ∧ dm−1x𝜇 , (226)

which is a premulticontact form and 𝜎Θ0 = 𝛾𝜇 dx
𝜇 .

For an integral section𝝍 (x𝜇) =
(
x𝜇 , ea

𝜇
(x𝜇),𝜔c

𝜌
(x𝜇), s𝛼(x𝜇)

)
, the

above equations become:

𝜕s𝜇

𝜕x𝜇
= L , (227)

𝜖𝜇𝜈𝜌
[
𝜂ac

𝜕𝜔c
𝜈

𝜕x𝜌
+ 1
2
𝜖abc

(
𝜔b

𝜈
𝜔c

𝜌
+ 𝜆eb

𝜈
ec
𝜌

)]
= 0 , (228)

𝜖𝜇𝜈𝜌

[
𝜂ac

𝜕ea
𝜇

𝜕x𝜌
− 𝜖abce

a
𝜇
𝜔b

𝜌
− 𝛾𝜌𝜂ace

a
𝜇

]
= 0 . (229)

Appendix B: Multicontact and Premulticontact
Structures

See ref. [52] for an exhaustive exposition on multicontact and
premulticontact structures and their application to describe non-
conservative (or action-dependent) first-order field theories.
Let P be a manifold with dimP = m + N and N ≥ m ≥ 1, and

two forms Θ,𝜔 ∈ Ωm(P) with constant rank. If ⊂ TP is a regu-
lar distribution and Γ() denotes the set of sections of  (vector
fields on )); for every k ∈ ℕ, let

k() = {𝛼 ∈ Ωk(P) | 𝜄(Z)𝛼 = 0 ; ∀Z ∈ Γ()}
= {𝛼 ∈ Ωk(P) | Γ() ⊂ ker 𝛼} , (230)

where ker 𝛼 = {Z ∈ 𝖷(P) | 𝜄 (Z) 𝛼 = 0}.
The Reeb distribution ℜ ⊂ TP associated with the couple

(Θ,𝜔) is defined, defined, at every point p ∈ P, as

ℜ
p =

{
v ∈ (ker𝜔)|p ∣ 𝜄(v)dΘp ∈ m

p (ker𝜔)
}
. (231)

The set of sections of the Reeb distributions is denoted ℜ =
Γ(ℜ) and its elements R ∈ ℜ are called Reeb vector fields:

ℜ = {R ∈ Γ(ker𝜔) | 𝜄(R)dΘ ∈ m(ker𝜔)} . (232)

Observe that ker𝜔 ∩ ker dΘ ⊂ ℜ. If 𝜔 is a closed form, thenℜ
is involutive.

Definition B.1. The couple (Θ,𝜔) is a premulticontact structure if 𝜔
is a closed form and, for 0 ≤ k ≤ N −m, we have that:

(1) rank ker𝜔 = N.
(2) rankℜ = m + k.
(3) rank (ker𝜔 ∩ kerΘ ∩ ker dΘ) = k.
(4) m−1(ker𝜔) = {𝜄 (R)Θ | R ∈ ℜ},

The triple (P,Θ,𝜔) is a premulticontact manifold and Θ is a premul-
ticontact form on P. The distribution  ≡ ker𝜔 ∩ kerΘ ∩ ker dΘ is
the characteristic distribution of (P,Θ,𝜔).
If k = 0, the couple (Θ,𝜔) is a multicontact structure, (P,Θ,𝜔) is

a multicontact manifold and Θ is a multicontact form on P.

Given a (pre)multicontact manifold (P,Θ,𝜔), there exists a
unique 1-form 𝜎Θ ∈ Ω1(P), which is called the dissipation form,
verifying that

𝜎Θ ∧ 𝜄(R)Θ = 𝜄(R)dΘ , for every R ∈ ℜ . (233)
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Then, we define the operator

d : Ωk(P) ←→ Ωk+1(P)

𝛽 ←→ d𝛽 = d𝛽 + 𝜎Θ ∧ 𝛽 . (234)

Theorem B.2. Around every point p ∈ P of a premulticontact
manifold (P,Θ,𝜔), there exists a local chart of adapted coordinates
(U; x1,… , xm, u1 … , uN−m−k, s1… , sm, w1,… , wk) such that

ker𝜔|U =
⟨

𝜕

𝜕u1
,… , 𝜕

𝜕uN−m−k
, 𝜕

𝜕s1
,… , 𝜕

𝜕sm
, 𝜕

𝜕w1
,… , 𝜕

𝜕wk

⟩
,

(235)

Dℜ|U =
⟨

𝜕

𝜕s1
,… , 𝜕

𝜕sm
, 𝜕

𝜕w1
,… , 𝜕

𝜕wk

⟩
, (236)

|U =
⟨

𝜕

𝜕w1
,… , 𝜕

𝜕wk

⟩
. (237)

On these charts, the coordinates (x𝜇) can be chosen in such a
way that the form 𝜔 can be expressed as 𝜔|U = dx1 ∧⋯ ∧ dxm ≡
dmx.
If (P,Θ,𝜔) is a multicontact manifold, in the above chart of

coordinates, there exists a unique local basis {R𝜇} ofℜ such that

𝜄
(
R𝜇

)
Θ = dm−1x𝜇 . (238)

Moreover, [R𝜇 , R𝜈 ] = 0. These vector fields R𝜇 ∈ ℜ are the local
Reeb vector fields of the multicontact manifold (P,Θ,𝜔) in the
chart U ⊂ P. Furthermore, from (232), we have that there are lo-
cal functions Γ𝜇 ∈ 𝒞∞(U) associated with the basis {R𝜇} which
are given by

𝜄
(
R𝜇

)
dΘ = Γ𝜇 𝜔 , ∀𝜇 , (239)

because 𝜄
(
R𝜇

)
dΘ ∈ m

p (ker𝜔) = ⟨𝜔⟩. As a consequence, the dis-
sipation form can be locally expressed on these charts as

𝜎Θ = Γ𝜇dx
𝜇 , (240)

because 𝜎Θ ∧ dm−1x𝜇 = Γ𝜇 𝜔 = Γ𝜇 d
mx, for every 𝜇.

If (P,Θ,𝜔) is a premulticontact manifold, then there exist local
vector fields {R𝜇} of ℜ such that ℜ =

⟨
R𝜇

⟩
+  and 𝜄

(
R𝜇

)
Θ =

dm−1x𝜇. They are unique up to a term in the characteristic distri-
bution. Moreover [R𝜇, R𝜈 ] ∈ Γ().
Observe that, using the adapted coordinates, the local Reeb vec-

tor fields are R𝜇 = 𝜕

𝜕s𝜇
.

The local structure of (pre)multicontact manifolds is stated in
the following:

Proposition B.3. Every (pre)multicontact manifold (P,Θ,𝜔) is lo-
cally diffeomorphic to a fiber bundle 𝜏 : P → M, where M is an ori-
entable manifold with volume form 𝜔

M
, and 𝜔 = 𝜏∗𝜔

M
.

This is the canonical model for (pre)multicontact manifolds
and it is the situation which is interesting in field theories.

Definition B.4.

1. The couple (Θ,𝜔) is amulticontact bundle structure and (P,Θ,𝜔)
is said to be a multicontact bundle if:

(1) rankℜ = m.
(2) ker𝜔 ∩ kerΘ ∩ ker dΘ = {0}.
(3) m−1(ker𝜔) = {𝜄 (R)Θ , R ∈ ℜ}.

2. The couple (Θ,𝜔) is a premulticontact bundle structure and
(P,Θ,𝜔) is said to be a premulticontact bundle if, for 0 < k ≤
N −m, we have that:
(1) rankℜ = m + k.
(2) rank (ker𝜔 ∩ kerΘ ∩ ker dΘ) = k.
(3) m−1(ker𝜔) = {𝜄 (R)Θ , R ∈ ℜ},

Furthermore, for field theories, the (pre)multisymplectic struc-
tures satisfy an additional requirement:

Definition B.5. If (P,Θ,𝜔) is a (pre)multicontact manifold such that

𝜄(X )𝜄(Y)Θ = 0 , for every X, Y ∈ Γ(ker𝜔) , (241)

then (Θ,𝜔) is said to be a variational (pre)multicontact structure and
(P,Θ,𝜔) is a variational (pre)multicontact manifold.

The terminology comes from the fact that this last condition
is what is imposed to the multicontact form to ensure that the
theory is variational and hence the field equations derive from a
Lagrangian (see ref. [56]).

Acknowledgements
We acknowledge financial support of the Ministerio de Ciencia, Inno-
vación y Universidades (Spain), grants PID2021-125515NB-C21, PID2022-
137909NB-C2, and RED2022-134301-T of AEI. We also acknowledge of the
Secretary of University and Research of the Ministry of Business and Knowl-
edge of the Catalan Government, project 2021SGR00603, and the financial
support for research groups AGRUPS-2022 of the Universitat Politècnica
de Catalunya (UPC). M. de León also acknowledges financial support from
the SeveroOchoa Programme for Centers of Excellence in R&D, CEX-2023-
001347-S. X. Rivas also acknowledges financial support of the Novee Idee
2B-POB II, project PSP: 501-D111-20-2004310 funded by the “Inicjatywa
Doskonałości-Uczelnia Badawcza” (IDUB) program. We truly appreciate
the referee’s valuable feedback and observations, which have been a big
help in improving our manuscript.

Conflict of Interest
The authors declare no conflicts of interest.

Keywords
action-dependent systems, classical field theories, contact structure, La-
grangian and Hamiltonian formalisms, multisymplectic structure

Received: October 29, 2024
Revised: February 21, 2025

[1] M. F. Atiyah, Bull. London Math. Soc. 1982, 14, 1.
[2] J. Marsden, A. Weinstein, Rep. Math. Phys. 1974, 5, 121.
[3] R. Abraham, J. E. Marsden, Foundations of Mechanics, 2nd ed.,

Benjamin–Cummings, Redwood City, CA 1987.
[4] V. I. Arnold,Mathematical Methods of Classical Mechanics, Graduate

Texts in Mathematics, Vol. 60, Springer-Verlag, New York 1989.

Fortschr. Phys. 2025, 73, e70000 © 2025 Wiley-VCH GmbHe70000 (23 of 25)

 15213978, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prop.70000 by U

niversidad A
utonom

a D
e M

adrid, W
iley O

nline L
ibrary on [26/06/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.fp-journal.org


www.advancedsciencenews.com www.fp-journal.org

[5] N. Román-Roy, J. Geom. Mech. 2020, 12, 541.
[6] A. Echeverría-Enriquez, M. C. Muũoz-Lecanda, N. Román-Roy, C.
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