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Abstract
This work presents a comprehensive review of the k-polysymplectic Marsden–
Weinstein reduction theory, rectifying prior errors and inaccuracies in the literature
while introducing novel findings. It also emphasises the genuine practical signifi-
cance of seemingly minor technical details. On this basis, we introduce a novel
k-polysymplectic energy–momentum method, new related stability analysis tech-
niques, and apply them to Hamiltonian systems of ordinary differential equations
relative to a k-polysymplectic manifold. We provide detailed examples of both physi-
cal and mathematical significance, including the study of complex Schwarz equations
related to the Schwarz derivative, a series of isotropic oscillators, integrable Hamil-
tonian systems, quantum oscillators with dissipation, affine systems of differential
equations, and polynomial dynamical systems.

Communicated by François Gay-Balmaz.

B Javier de Lucas
javier.de.lucas@fuw.edu.pl

Leonardo Colombo
leonardo.colombo@car.upm-csic.es

Xavier Rivas
xavier.rivas@urv.cat

Bartosz M. Zawora
b.zawora@uw.edu.pl

1 Centro de Automática y Robótica (CSIC-UPM), Carretera de Campo Real, km 0, 200, 28500
Arganda del Rey, Spain

2 Centre de Recherches Mathématiques, Université de Montréal, Succ. Centre-Ville, CP 6128,
Montréal, QC H3C 3J7, Canada

3 Department of Mathematical Methods in Physics, University of Warsaw, ul. Pasteura 5, 02-093
Warsaw, Poland

4 Department of Computer Engineering and Mathematics, Universitat Rovira i Virgili, Avinguda Països
Catalans 26, 43007 Tarragona, Spain

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-025-10135-w&domain=pdf
http://orcid.org/0000-0001-6493-6113
http://orcid.org/0000-0001-8643-144X
http://orcid.org/0000-0002-4175-5157
http://orcid.org/0000-0003-4160-1411


   42 Page 2 of 54 Journal of Nonlinear Science            (2025) 35:42 

Keywords Energy–momentum method · k-polysymplectic manifold · Lie system ·
Marsden–Weinstein reduction · Relative equilibrium point · Stability

Mathematics Subject Classification Primary 34A26 · 34D20 · 37J39; Secondary
53B50 · 53C15

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1 Lyapunov Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 On k-Polysymplectic Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 On ω-Hamiltonian Functions and Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 k-Polysymplectic Momentum Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 k-Polysymplectic Marsden–Weinstein Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 A Review on the k-Polysymplectic Marsden–Weinstein Reduction . . . . . . . . . . . . . . . .
3.2 On the Conditions for the kPolysymplectic Marsden–Weinstein Reduction . . . . . . . . . . . .
3.3 On the k-Polysymplectic Manifold Given by the Product of k Symplectic Manifolds . . . . . . .

4 The k-Polysymplectic Energy Momentum-Method . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 k-Polysymplectic Relative Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Stability in the k-Polysymplectic Energy Momentum-Method . . . . . . . . . . . . . . . . . . .

5 Applications and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Complex Schwarz Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 The k-Polysymplectic Manifold Given by the Product of k Symplectic Manifolds . . . . . . . .
5.3 k-Polysymplectic Affine Lie Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Quantum Quadratic Hamiltonian Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Equilibrium Points and Vector Fields with Polynomial Coefficients . . . . . . . . . . . . . . . .

6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

The classical energy–momentum method is a technique for analysing a Hamiltonian
system on a symplectic manifold, particularly in the region near solutions whose evo-
lution is induced by the Lie symmetries of the Hamiltonian system (see Bloch 2003
for a historical introduction and Marsden and Simo 1988 for one of its foundational
works). More specifically, it explores whether, over time, solutions converge towards
or diverge from the solutions associated with the Lie symmetries of the Hamilto-
nian system. The classical energy–momentum method is grounded in the symplectic
Marsden–Weinstein reduction theory and utilises stability analysis techniques.

The main ideas behind the energy–momentummethod can be traced back to Routh,
Poincaré, Lyapunov,Arnold, Lewis, andSmale, amongothers (seeBloch2003, Section
3.14). Then, the classical energy–momentum method, devised and developed mainly
byMarsden andSimo (1988),was successfully applied tomany problems by numerous
researchers (Abarbanel andHolm 1987;Marsden et al. 1990;Marsden andRatiu 1999;
Marsden et al. 1989; Ortega et al. 2005; Simo et al. 1991; Zenkov et al. 1998). Over
the years, the energy–momentum method was extended to deal with more general
differential equations, e.g. stochastic Hamiltonian systems (Bai and Zhang 2014),
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discrete systems (Marsden and Ratiu 1999; Simo and Tarnow 1992), etc (Wang and
Krishnaprasad 1992). In this work, we develop a new energy–momentum method for
Hamiltonian systems related to k-polysymplectic manifolds (Awane 1992; de León
et al. 1988).

k-Symplectic geometry is a generalisation of symplectic geometry introduced by
Awane (1992), Awane and Goze (2000). Posteriorly, de León et al. (1997, 1988), de
León et al. (1988) andMcLean and Norris (2000), Norris (1993) utilised k-symplectic
geometry to describe first-order field theories (Búa et al. 2015; Echeverría-Enríquez
et al. 1996;Román-Royet al. 2007). k-Symplectic geometry is the sameas thepolysym-
plectic geometry described by Günther (1987), but differs from the polysymplectic
geometry introduced byGiachetta et al. (1997), Sardanashvily (1995) andKanatchikov
(1998). k-Symplectic manifolds have been widely used to study physical systems gov-
erned by systems of partial differential equations. In particular, it gives a geometric
description of the Euler–Lagrange and the Hamilton–de Donder–Weyl field equations
and the systems described by them. For instance, k-symplectic geometry enables us to
describe their symmetries, conservation laws, reductions, etc (Awane 1992; Günther
1987; Marrero et al. 2015; Román-Roy et al. 2007). As there are many k-symplectic-
like definitions with related but mainly different and even contradictory meanings, it is
relevant to fix properly the terminology. Hereafter, we will deal with k-polysymplectic
manifolds, i.e. manifolds endowed with a closed nondegenerate differential two-form
taking values in a k-dimensional vector space.

Remarkably, k-polysymplectic geometry has proved to be useful in the analysis
of systems of ordinary differential equations and their so-called superposition rules
(de Lucas and Vilariño 2015). Note that (de Lucas and Vilariño 2015) uses mainly
the k-symplectic structure notion, namely a family of k differential closed two-forms
ω1, . . . , ωk on a manifold M so that

⋂k
α=1 ker ωα = 0 and dim M = n(k + 1) for

some natural number n. It is also worth stressing that the study of systems of ordinary
differential equations via k-polysymplectic geometry differs substantially from the
standard framework, which is focused on systems of partial differential equations, and
leads to new lines of research.

More specifically, this work focuses on studying systems of first-order differ-
ential equations describing the integral curves of a vector field. Moreover, we
assume that the vector field is Hamiltonian relative to a k-polysymplectic mani-
fold, which here amounts to the fact that it is Hamiltonian relative to a series of
presymplectic forms whose kernels have zero intersection. We aim to develop an
energy–momentum method for such systems of ordinary differential equations with
an underlying k-polysymplectic geometry. To achieve this goal, we will begin by
reviewing and improving previous works on k-polysymplectic Marsden–Weinstein
reductions (Blacker 2019; de Lucas et al. 2023; García-Toraño Andrés and Mestdag
2023; Marrero et al. 2015; Munteanu et al. 2004), which is one of the basis of our
k-polysymplectic energy–momentum method. Hopefully, our review will solve previ-
ous problems and inaccuracies in the k-polysymplectic reduction literature, and will
allow us to understand the meaning of some of the findings of this work.

The first k-polysymplectic reduction was developed by Günther Awane (1992),
de León et al. (2015), Günther (1987). Unfortunately, his work was flawed mainly
due to the improper analysis of the double orthogonal relative to a k-polysymplectic
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form. More specifically, Günther (1987, Lemma 7.5 and Theorem 7.7) contain main
Günther’s mistakes, while Marrero et al. (2015, Section 2.2) provides an interest-
ing counterexample showing Günther’s error1. Another similarly flawed attempt to
develop a k-polysymplectic reduction was accomplished in Munteanu et al. (2004).
These mistakes were fixed in Marrero et al. (2015), where sufficient conditions to
accomplish a k-polysymplectic reduction were established. Despite that, Marrero et
al. (2015, Lemma3.4) implicitly suggests that Sard’s Theorem justifies that it is enough
to assume that the k-polysymplectic momentum map is a submersion. Although this
assumption works very well in the classical symplectic Marsden–Weinstein reduction
theory and Sard’s Theorem can be used to justify it Blankenstein and Ratiu (2004),
our work proves that this condition is far from ideal in the k-polysymplectic geom-
etry realm and why Sard’s Theorem cannot be used in this new context. Moreover,
practical examples showing that it is convenient to assume that the momentum map in
k-polysymplectic geometry is not a submersion are provided. Then, we stress that it
is appropriate to use a formalism with k-polysymplectic momentum maps that admit
only weak regular points, as accomplished in de Lucas et al. (2023). We highlight that
this provides a practical generalisation of the k-polysymplectic Marsden–Weinstein
reduction and it completes the analysis performed in Blacker (2019), García-Toraño
Andrés and Mestdag (2023), Günther (1987), Marrero et al. (2015).

Necessary and sufficient conditions for a k-polysymplectic Marsden–Weinstein
reduction were described implicitly in Marrero et al. (2015, pg. 12) and spelled out in
detail by Blacker in Blacker (2019). Unfortunately, one of Blacker’s main theorems,
namely (Blacker 2019, Theorem 3.22), has a small misleading typo in the statement
of the conditions (as pointed out in García-Toraño Andrés and Mestdag (2023)), in its
proof, and it presents other minor technical issues concerning the existence of certain
submanifold structures. These latter facts are shown and explained in this work for
the first time. It is also worth noting that Blacker analyses the occurrence of orbifolds
in k-polysymplectic Marsden–Weinstein reductions for regular values of momentum
maps related to pathological Lie group actions.

The need for the use of Ad∗k-equivariant momentummaps in the k-polysymplectic
Marsden–Weinstein reductions was removed in de Lucas et al. (2023) by extending
to the k-polysymplectic realm the classical theory of affine Lie group actions on
symplectic manifolds (Ortega and Ratiu 2004). Next, García-Toraño and Mestdag
reviewed inGarcía-TorañoAndrés andMestdag (2023) the sufficient conditions for the
k-polysymplecticMarsden–Weinstein reduction devised inMarrero et al. (2015). They
claimed that just one of the sufficient conditions for the k-polysymplectic reduction
given in Marrero et al. (2015, Theorem 3.17, condition (3.6)) is enough to ensure the
existence of a k-polysymplecticMarsden–Weinstein reduction. In thiswork,we showa
mistake in the proof of one of the main results in García-Toraño Andrés and Mestdag
(2023), used to justify the previous claim. Indeed, we here point out that García-
Toraño Andrés and Mestdag (2023, Lemma 3.1) is false via a counterexample, and
prove the general independence of the conditions in Marrero et al. (2015, Theorem

1 There is a typo inMarrero et al. (2015, pg. 4) as its authors refer to Theorem 7.6 in Günther (1987), which
does not exist: there is only Definition 7.6. Flawed Günther’s reduction theorem is described in Günther
(1987, Theorem 7.7).
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3.17). Moreover, our work also explains other properties relative to such sufficient
conditions.

In order to illustrate a relevant example of k-polysymplectic Marsden–Weinstein
reduction, we review the construction of a k-polysymplectic manifold induced by k
symplectic manifolds and a related k-polysymplectic Marsden–Weinstein reduction.
It is worth noting that, in this case, and in our applications in Sect. 5, the sufficient
conditions for the k-polysymplectic Marsden–Weinstein reduction given in Marrero
et al. (2015) are generally simpler to apply than Blacker’s necessary and sufficient
conditions, as the conditions in Marrero et al. (2015) do not depend on double k-
polysymplectic orthogonal spaces and can be verified using structures easily available
in our examples.

Next, an energy–momentum method for Hamiltonian k-polysymplectic systems is
developed. This entails the definition and characterisation of a relative equilibrium
notion for k-polysymplectic Hamiltonian systems. In short, a relative equilibrium
point for a k-polysymplectic Hamiltonian system is a point at which the dynamics
is determined by a Hamiltonian Lie symmetry of the k-polysymplectic Hamiltonian
system. After a k-polysymplectic Marsden–Weinstein reduction, relative equilibrium
points project onto equilibrium points of a k-polysymplectic Hamiltonian system
on a reduced k-polysymplectic manifold. Our k-polysymplectic energy–momentum
method also requires the development of an appropriate modification of known sym-
plectic stability techniques to a k-polysymplectic realm. In particular, the stability of
relative equilibrium points for k-polysymplectic Hamiltonian systems is characterised
by analysing the character of k different functions having, mainly, degenerate critical
points, namely their Hessians are degenerate at critical points. As in the symplectic
case, a formal stability giving sufficient but not necessary conditions for the stability
in the reduced space are given. The interest in our formal stability condition is justified
by our applications. Although the formal stability condition is easy to verify and can
be used in many cases, it is worth noting that proving its properties is quite more
difficult than in the symplectic case. Moreover, we here just sketch that it is possible
to develop many other alternative sufficient conditions to ensure stability.

Then, some applications of our k-polysymplectic energy–momentum method are
developed. In particular, the theory of Lie systems is used to transform certain automor-
phic Lie systems (Cariñena and de Lucas 2011; Cariñena et al. 2000, 2007;Winternitz
1983) into k-polysymplectic Hamiltonian systems. A Lie system is a non-autonomous
system of first-order differential equations whose general solution can be written as
an autonomous function, a superposition rule, of a generic family of particular solu-
tions and some constants. Lie systems are very important due to their applications and
mathematical properties (Cariñena and de Lucas 2011; de Lucas and Sardón 2020).
Automorphic Lie systems are Lie systems in Lie groups of special relevance, in par-
ticular, in control theory (Cariñena and Ramos 2003). A k-polysymplectic manifold is
used to study complex Schwarz equations, which are here studied through the theory
of Lie systems and k-polysymplectic geometry for the first time (see de Lucas and
Sardón 2020 for the analysis of the real, simpler, case). It is worth noting that the com-
plex Schwarz equation provides the description, when written as a first-order system
of differential equations, of certain properties of the Schwarz derivative, which has
applications in string theory, modular forms, hypergeometric functions (Guieu and
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Roger 2007; Hille 1997; Lehto 1979), and other related equations (Bozhkov and da
Conceição 2020). Automorphic Lie systems related to quantum oscillators with dissi-
pative terms are also studied via k-polysymplectic techniques. We develop methods to
study certain dynamical systems via Hamiltonian k-polysymplectic systems. This is
applied to a family of k particles in a three-dimensional space, that are under the effect
of different isotropic potentials and have no interaction between them. In this case, the
techniques of our k-polysymplectic energy–momentum method are illustrated. Fur-
thermore, a particular type of affine Lie system is used to show certain aspects of our
k-polysymplectic energy–momentum method. Potentially, the ideas used in this latter
example could be used to study affine control systems of a similar type (Cariñena
and Ramos 2003). Other examples related to differential equations with polynomial
coefficients are presented and analysed.

The structure of the paper goes as follows. Section2 presents the basic notions and
terminology to be used in our work. More particularly, Sect. 2.1 provides a review
of the fundamentals of Lyapunov stability. In Sect. 2.2, we delve into the theory
of k-polysymplectic manifolds, introducing the concept of an ω-Hamiltonian vector
field and function on such a manifold in Sect. 2.3, and studying k-polysymplectic
momentum maps in Sect. 2.4. Section3 is dedicated to enhancing the existing
Marsden–Weinstein reduction procedures for k-polysymplectic manifolds and pre-
senting a k-polysymplectic Marsden–Weinstein reduction of the dynamics governed
by an ω-Hamiltonian vector field. Note that this implies that some previous results,
like (Marrero et al. 2015, Theorem 4.4), are here slightlymodified to analysemore effi-
ciently systems of ordinary differential equations. Relevantly, this section surveys and
corrects many inaccuracies and mistakes in the previous literature. Section4 intro-
duces an energy–momentum method for systems of ordinary differential equations
(ODEs) with an underlying k-polysymplectic structure. We define and characterise
the concept of a relative equilibrium point for such systems. A theory of stability for
the analysis of relative equilibrium points for k-polysymplectic Hamiltonian systems
is presented. In Sect. 5, we thoroughly examine several relevant examples, including
the complex Schwarz equation, the product of multiple symplectic manifolds along
with a related family of isotropic oscillators, an affine first-order system of differential
equations related to Lie systems and, potentially, to control systems, and quantum har-
monic oscillators with dissipative terms. Finally, Sect. 6 summarises the conclusions
of our work and offers insights into potential avenues for further development.

2 Fundamentals

Let us set some general assumptions and notation to be used throughout this work.
It is hereafter assumed that all structures are smooth. Manifolds are real, Hausdorff,
connected, paracompact, and finite-dimensional. Differential forms are assumed to
have constant rank unless otherwise stated. Summation over crossed repeated indices
is understood, although it can be explicitly detailed at times to improve the clarity of
our presentation. All our considerations are local to stress our main ideas and to avoid
technical problems concerning the global manifold structure of quotient spaces and
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similar issues. Hereafter, X(P) and �k(P) stand for the C∞(P)-modules of vector
fields and differential k-forms on a manifold P .

2.1 Lyapunov Stability

Let us establish some fundamental notions and theorems on the stability of dynamical
systems used in our k-polysymplectic formulation of the energy–momentum method
(de Lucas and Zawora 2021; Zawora 2021).

Since all manifolds considered in this work are paracompact and Hausdorff, they
admit a Riemannian metric g (Lee 2009). The topology induced by g is the one of the
manifold (Lee 2009, 2012; Zawora 2021). The metric g induces a distance in P so
that the distance between two points x1, x2 ∈ P is given by

dg(x1, x2) := inf
{
�g(γ ) | γ : [0, 1] → P, γ (0) = x1, γ (1) = x2

}
,

where �g(γ ) is the length of the smooth curve γ : [0, 1] → P relative to the metric g.
Moreover, consider

dx

dt
= X(x), ∀x ∈ P, (2.1)

where X is a vector field on P . A point xe ∈ P such that X(xe) = 0. Such a point is
called an equilibrium point of (2.1), or indistinctly, of X . Furthermore, xe is stable if,
for every ball Bxe,ε := {x ∈ P | dg(x, xe) < ε}, there exists a radius δ(ε, xe) such that
every solution x(t) of (2.1) with initial condition x(t0) = x0 ∈ Bxe,δ(ε,xe) for some
t0 ∈ R is contained in Bxe,ε for t > t0. An equilibrium point xe ∈ P is unstable if it
is not stable.

The fact that the topology of a manifold is the same as the topology induced for
any metric on it allows one to show that every dg, independently of the associated g,
induces the same stable and unstable points for (2.1).

Lyapunov theory studies the stability of equilibrium points of first-order differential
equations. Let M : P → R be a function and let us define

Ṁ(x) := (XM)(x), ∀x ∈ P.

Let us recall the basic Lyapunov theorem for autonomous systems (2.1).

Theorem 2.1 Let xe be an equilibrium point of (2.1) and let M : P → R be a
continuous function such that M(xe) = 0, M(x) > 0, and Ṁ(x) ≤ 0 for every
x ∈ Bxe,r\{xe} and some r ∈ R

+. Then, xe is stable.

In the literature, the functionM is called a Lyapunov function (Vidyasagar 2002).
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2.2 On k-Polysymplectic Manifolds

This section recalls the basic notions in k-polysymplectic geometry to be used later
on. This is relevant as a single term may refer to different not equivalent geometric
concepts in the literature.

Hereafter, we work with differential �-forms on P that take values inRk . The space
of such forms is denoted by ��(P,Rk), while its elements will be written in bold.
Moreover, Rk has a fixed basis {e1, . . . , ek} giving rise to a dual basis {e1, . . . , ek} in
R
k∗. Hence, an element ω ∈ ��(P,Rk) can always be written as ω = ωα ⊗ eα for

some uniquely defined differential �-forms ω1, . . . , ωk on P . A differential �-form on
P taking values in R

k , let us say ω, is nondegenerate if

ker ω = ker(ωα ⊗ eα) :=
k⋂

α=1

ker ωα = 0.

Let us introduce the following definition that will be useful to simplify the notation
of our further work. Let ϑ = ϑα ⊗ eα ∈ ��(P,Rk) be an R

k-valued differential
�-form on P . Then, the contraction of ϑ with a vector field X ∈ X(P) is defined as

ιXϑ := (ιXϑα) ⊗ eα =: 〈ϑ, X〉 ∈ ��−1(P,Rk).

In short, the exterior differential, the Lie derivative with respect to vector fields,
and many other operations on differential forms can naturally be extended to �-
differential forms taking values in vector spaces by considering the natural action
of the above-mentioned operations on the components ofRk-valued differential forms
and extending them to ��(P,Rk) by linearity.

A k-vector field on a manifold P is, essentially, a family of k vector fields on P .
We write X(P,Rk) for the space of k-vector fields on P and its elements will be
written in bold. Moreover, a k-vector field, let us say X , can always be written in a
unique manner as X = Xα ⊗ eα for a family X1, . . . , Xk of vector fields on P . The
contraction of a k-vector field X = Xα ⊗ eα with a k-differential form ω = ωα ⊗ eα

is the function on P defined as follows

ιXω := ιXαωα =: 〈ω, X〉.

Now, let us turn to one of the main fundamental notions to be studied in this paper.

Definition 2.2 A k-polysymplectic form on P is a closed nondegenerate R
k-valued

differential two-form ω on P . The pair (P,ω) is called a k-polysymplectic manifold.

Consider a k-polysymplectic manifold (P,ω), and let Wp ⊂ Tp P at some p ∈ P .
The k-polysymplectic orthogonal complement of Wp with respect to (P,ω) is

W⊥,k
p := {vp ∈ Tp P | ω(wp, vp) = 0, ∀wp ∈ Wp}.

k-Polysymplectic manifolds are called, for simplicity, polysymplectic manifolds in
the literature (Marrero et al. 2015). Nevertheless, the latter term may be misleading
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as refers here to a different concept shown below. Hence, to avoid confusion, we will
use the full term k-polysymplectic manifold. Let us define polysymplectic manifolds,
k-polysymplectic manifolds, and related notions.

Definition 2.3 Let P be an n(k + 1)-dimensional manifold. Then,

• A polysymplectic form on P is a nondegenerate differential two-form, ω, taking
values in Rk . We call (P,ω) a polysymplectic manifold.

• A k-symplectic structure on P is a pair (ω,D), where (P,ω) is a polysymplectic
manifold and D ⊂ TP is an integrable distribution on P of rank nk such that

ω|D×D = 0.

In this case, (P,ω,D) is a k-symplectic manifold. We call D a polarisation of
(P,ω).

If the two-form ω is exact, namely ω = dθ for some θ ∈ �1(P,Rk), in any of the
notions in Definition 2.3, then such concepts are said to be exact.

Note that the difference between polysymplectic and k-polysymplectic manifolds
relies on the fact that in the polysymplectic case, the dimension of the manifold is
proportional to k + 1 if the polysymplectic form takes values in Rk .

2.3 On!-Hamiltonian Functions andVector Fields

Let us survey the basic theory on k-polysymplectic vector fields and functions. Recall
that we will not be concerned with the local or global character of the structures to be
defined next.

Definition 2.4 Given a k-polysymplectic manifold (P,ω = ωα ⊗ eα), a vector field
Y ∈ X(P) is ω-Hamiltonian if it is Hamiltonian with respect to all the presymplectic
forms ω1, . . . , ωk , namely ιYωα is closed for α = 1, . . . , k. Let us denote by Xω(P)

the space of ω-Hamiltonian vector fields in a k-polysymplectic manifold (P,ω).

Note that if ιYωα is closed, then it generally admits a potential function only locally.
Anyhow, thiswork ismainly concernedwith local aspects and the fact that the potential
function may not be globally defined will not have any repercussions in what follows.

It is convenient for the study of ω-Hamiltonian vector fields to introduce some
generalisation of the Hamiltonian function notion for presymplectic forms to deal
simultaneously with all associated h1, . . . , hk (see Awane 1992; de Lucas andVilariño
2015 for details).

Definition 2.5 Given a k-polysymplectic manifold (P,ω = ωα ⊗ eα), we say that
h = hα ⊗ eα is an ω-Hamiltonian function if there exists a vector field Xh on P such
that ιXhω = dh, namely ιXhω

α = dhα for α = 1, . . . , k. In this case, we call h an
ω-Hamiltonian function for Xh. We write C∞

ω (P) for the space of ω-Hamiltonian
functions of (P,ω).
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Anω-Hamiltonian vector field (resp. function) will be simply called k-Hamiltonian
at times, if ω is understood from context or its specific expression is not relevant. In
Merino (1997), the author defined the k-Hamiltonian system associated with the Rk-
valuedHamiltonian function h as the vector field Xh of the above definition.Moreover,
Awane (1992) called h aHamiltonianmap of X when X is additionally an infinitesimal
automorphism of a certain distribution on which it is assumed that the presymplectic
forms of the k-symplectic distribution vanish.

Example 2.6 Consider the two-polysymplectic manifold (R3,ω), where {u, v, w} are
linear coordinates onR3 andω = ω1⊗e1+ω2⊗e2, where (see de Lucas and Vilariño
2015 for details)

ω1 = −4w

v2
du ∧ dw + 1

v
dv ∧ dw + 4w2

v3
du ∧ dv,

ω2 = − 4

v2
du ∧ dw + 8w

v3
du ∧ dv,

is a two-polysymplectic form. The vector fields

X1 = 4u2
∂

∂u
+ 4uv

∂

∂v
+ v2

∂

∂w
, X2 = ∂

∂u
,

are ω-Hamiltonian with ω-Hamiltonian functions

f =
(
4uw − 8

u2w2

v2
− v2

2

)
⊗ e1 +

(
4u − 16

u2w

v2

)
⊗ e2,

g = −2
w2

v2
⊗ e1 − 4

w

v2
⊗ e2,

respectively, relative to the two-polysymplectic form ω. �
Every ω-Hamiltonian vector field is associated with at least one ω-Hamiltonian

function. Conversely, every ω-Hamiltonian function induces a unique ω-Hamiltonian
vector field.

Proposition 2.7 The space C∞
ω (P) relative to k-polysymplectic manifold (P,ω)

becomes a Lie algebra when endowed with the natural operations

h + g := (hα + gα) ⊗ eα, λ · h := λhα ⊗ eα,

where h = hα ⊗ eα , g = gα ⊗ eα ∈ C∞
ω (P), λ ∈ R, and the Lie bracket {·, ·}ω :

C∞
ω (P) × C∞

ω (P) → C∞
ω (P) of the form

{h, g}ω = {h1, g1}ω1 ⊗ e1 + · · · + {hk, gk}ωk ⊗ ek,

where {·, ·}ωα is the Poisson bracket naturally induced by the presymplectic form ωα ,
with α = 1, . . . , k.
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The product of ω-Hamiltonian functions

h�g = (h1g1) ⊗ e1 + · · · + (hkgk) ⊗ ek,

is not in general an ω-Hamiltonian function (de Lucas and Vilariño 2015, pg. 2239).
Hence, (C∞

ω (P), �, {·, ·}ω) is not in general a Poisson algebra (de Lucas and Vilariño
2015, pg. 2239). Moreover, the map {h, ·}ω : g ∈ C∞

ω (P) �→ {g, h}ω ∈ C∞
ω (P),

with h ∈ C∞
ω (P), is not, in general, a derivation with respect to � either. Hence, k-

polysymplectic geometry is quite different from Poisson and presymplectic geometry.
Nevertheless, {h, g}ω = 0 for every locally constant function g ∈ C∞

ω (P) and any
h ∈ C∞

ω (P). This Lie algebra admits other properties, as shown next.

Proposition 2.8 Consider a k-polysymplectic manifold (P,ω). Every ω-Hamiltonian
vector field Xh acts as a derivation on the Lie algebra (C∞

ω (P), {·, ·}ω) in the form

Xh f = { f , h}ω, ∀ f ∈ C∞
ω (P),

where h is an ω-Hamiltonian function for Xh.

2.4 k-Polysymplectic MomentumMaps

Let us survey the theory of k-polysymplecticmomentummaps. Note that the presented
results are not restricted toAd∗k-equivariantmomentummaps (see de Lucas et al. 2023
for further details).

Definition 2.9 A Lie group action � : G × P → P on a k-polysymplectic manifold
(P,ω) is a k-polysymplectic Lie group action if �∗

gω = ω for each g ∈ G. In other
words,

LξPω = 0, ∀ξ ∈ g,

where ξP is the fundamental vector field of � related to ξ ∈ g, namely ξP (p) =
d
dt

∣
∣
t=0�(exp(tξ), p) for any p ∈ P .

Definition 2.10 A k-polysymplectic momentum map for a Lie group action � : G ×
P → P with respect to a k-polysymplectic manifold (P,ω) is a mapping J� : P →
(g∗)k such that

ιξPω = (ιξPωα) ⊗ eα = d
〈
J�, ξ

〉
, ∀ξ ∈ g. (2.2)

Equation (2.2) implies that J� : P → (g∗)k satisfies

ιξ P
ω = d

〈
J�, ξ

〉
, ∀ξ ∈ gk .

and conversely. For simplicity, we will write 〈J�, ξ 〉 =: J�
ξ
.

123



   42 Page 12 of 54 Journal of Nonlinear Science            (2025) 35:42 

Before continuing studying k-polysymplectic momentum maps, recall that every
Lie group G gives rise to a Lie group action I : (g, h) ∈ G ×G �→ Ig(h) = ghg−1 ∈
G, such that Ig : h ∈ G �→ I (g, h) ∈ G for every g ∈ G. Then, the adjoint action of
G on its Lie algebra, g, reads Ad : (g, v) ∈ G ×g �→ Adg(v) = Te Ig(v) ∈ g. In turn,
the co-adjoint action becomes Ad∗ : (g, ϑ) ∈ G×g∗ �→ Ad∗

g−1 ϑ = ϑ ◦Adg−1 ∈ g∗.
The following definition has beenwidely used in the literature (Marrero et al. 2015),

although we will see that the Ad∗k-equivariance condition is no longer necessary (see
de Lucas et al. 2023 for details). Moreover, we have changed the standard notation
Coadk to Ad∗k to shorten it.

Definition 2.11 A k-polysymplectic momentum map J� : P → (g∗)k is Ad∗k-
equivariant if

J� ◦ �g = Ad∗k
g−1 ◦ J�, ∀g ∈ G,

where Ad∗k
g−1 = Ad∗

g−1 ⊗ (k)· · · ⊗ Ad∗
g−1 and

Ad∗k : G × (g∗)k −→ (g∗)k
(g,μ) �−→ Ad∗k

g−1 μ
.

In other words, the diagram aside is commutative for every g ∈ G.

P (g∗)k

P (g∗)k .

J�

�g Ad∗k
g−1

J�

To simplify the notation, let us introduce the following definition.

Definition 2.12 A G-invariant ω-Hamiltonian system is a tuple (P,ω, h, J�), where
(P,ω) is a k-polysymplectic manifold, h is a ω-Hamiltonian function associated with
Xh, the map � : G × P → P is a k-polysymplectic Lie group action satisfying
�∗

gh = h for every g ∈ G, and J� is a k-polysymplectic momentum map related

to �. An Ad∗k-equivariant G-invariant ω-polysymplectic Hamiltonian system is a
G-invariant ω-Hamiltonian system (P,ω, h, J�) such that J� is Ad∗k-equivariant.

For simplicity, one sometimes calls ω-Hamiltonian system a triple (P,ω, h) for a
certain ω-Hamiltonian function h.

Let us provide the formalism needed to avoid the Ad∗k-equivariance.

Proposition 2.13 Let (P,ω, h, J�) be a G-invariant ω-Hamiltonian system. If

ψg,ξ : x ∈ P �−→ J�
ξ (�g(x)) − J�

Adk
g−1 ξ

(x) ∈ R, ∀g ∈ G, ∀ξ ∈ gk,

then ψg,ξ is constant on P for every g ∈ G and ξ ∈ gk . Moreover, σ : g ∈ G �→
σ (g) ∈ (g∗)k , which is uniquely determined by the condition 〈σ (g), ξ〉 = ψg,ξ for
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every ξ ∈ gk , satisfies

σ (g1g2) = σ (g1) + Ad∗k
g−1
1

σ (g2), ∀g1, g2 ∈ G.

The map σ : G → (g∗)k of the form

σ (g) = J� ◦ �g − Ad∗k
g−1 J

�, g ∈ G,

is called the co-adjoint cocycle associated with the k-polysymplectic momentum map
J� on P . Moreover, J� is an Ad∗k-equivariant k-polysymplectic momentum map if
and only if σ = 0.

A map σ : G → (g∗)k is a coboundary if there exists μ ∈ (g∗)k such that

σ (g) = μ − Ad∗k
g−1 μ, ∀g ∈ G.

Proposition 2.14 Let J� : P → (g∗)k be a k-polysymplectic momentum map related
to a k-polysymplectic action � : G × P → P with co-adjoint cocycle σ . Then,

(1) there exists a Lie group action of G on (g∗)k of the form

� : (g,μ) ∈ G × (g∗)k �→ σ (g) + Ad∗k
g−1 μ =: �g(μ) ∈ (g∗)k,

(2) the k-polysymplectic momentum map J� is equivariant with respect to �, in other
words, for every g ∈ G, one has the commutative diagram aside.

P (g∗)k

P (g∗)k .

J�

�g �g

J�

Proposition 2.14 ensures that every k-polysymplectic momentum map J� gives
rise to an equivariant k-polysymplectic momentum map relative to a new action
� : G × (g∗)k → (g∗)k , called a k-polysymplectic affine Lie group action. Note
that a k-polysymplectic affine Lie group action can also be expressed by writing
�(g, (μ1, . . . , μk)) = (�1

gμ
1, . . . ,�k

gμ
k) ∈ (g∗)k , where the mappings �1, . . . ,�k

take the form �α : (g, ϑ) ∈ G × g∗ �→ Ad∗
g−1 ϑ + σα(g) = �α

g (ϑ) ∈ g∗ and

σ (g) = (σ 1(g), . . . , σ k(g)), where σα(g) = J�
α ◦ �g − Ad∗

g−1 J�
α for α = 1, . . . , k

and J�
1 , . . . , J�

k are the coordinates of J�.

3 k-Polysymplectic Marsden–Weinstein Reduction

Let us now review previous results in the literature for the k-polysymplectic Marsden–
Weinstein reduction to correct previous mistakes and inaccuracies. Furthermore, we
introduce the reduction of the dynamical system governed by an ω-Hamiltonian vec-
tor field. This concept is novel, as prior research has focused on dynamical systems
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given by Hamiltonian k-vector fields (Blacker 2019; Marrero et al. 2015). In par-
ticular, this section first reviews the previous k-polysymplectic Marsden–Weinstein
reduction theory and explains some, only apparently, minor inaccuracies. After that,
we focus on resolving a mistake in one of the main results in García-Toraño Andrés
and Mestdag (2023), concerning the conditions to obtain a k-polysymplectic reduc-
tion. Finally, in Subsection 3.2, we analyse the relations between the conditions for
the k-polysymplectic reduction given in Marrero et al. (2015).

3.1 A Review on the k-Polysymplectic Marsden–Weinstein Reduction

Let us recall several definitions that are useful for what follows. Some technical
assumptionswill be first set to improve the applicability of k-polysymplecticMarsden–
Weinstein reductions. A weak regular value of a mapping φ : M → N is a point
x0 ∈ N such that φ−1(x0) is a submanifold of M and ker Tpφ = Tp[φ−1(x0)] for
every p ∈ φ−1(x0). In particular, regular values of φ are weak regular values too.
Moreover, a Lie group action � : G × M → M is quotientable (Albert 1989) when
the space of orbits of the action of G on M , let us say M/G, is a manifold and the
projection π : M → M/G is a submersion. In particular, this occurs when � is free
and proper. To familiarise the reader with weak regular values, which are essential in
this work, let us present a simple example of a point that is neither a regular value nor
a weak regular value.

Example 3.1 Let f : R
2 → R be defined by f (x, y) = x2. Consider the vector

field X = ∂
∂x on R

2. Then, (ιXd f )(x, y) = 0 if x = 0. However, X is not tangent
to f −1(0) = {(x, y) ∈ R

2 | x = 0}, since T(0,y) f −1(0) = 〈 ∂
∂ y 〉 for every y ∈ R.

Therefore, as ker T(0,y) f �= T(0,y) f −1(0), it follows that 0 ∈ R is not a weak regular
value of f . Indeed, it is not a regular value either since T f = 0 at points of f −1(0).

More generally, for any function f : M → N , a point λ ∈ N is not a weak regular
value of f if Tp f (vp) = 0 for some vp ∈ TpM with p ∈ f −1(λ) that is not tangent
to the submanifold f −1(λ).

Let us comment on the regular values of k-polysymplectic momentum maps. The
codomain of a k-polysymplectic momentum map J� : P → g∗k may have a large
dimension, even larger than the dimension of P , for instance, due to the presence of k
copies of g∗. This implies that it may be impossible for J� to be a submersion when
k is large enough. Being a submersion is the typical condition used in many types of
Marsden–Weinstein reductions (García-Toraño Andrés and Mestdag 2023; Marrero
et al. 2015). But this property is harder to satisfy in k-polysymplectic geometry. Note
that it is sometimes assumed in the literature that Sard’s Theorem ensures that J� is
frequently a submersion because the set of singular points in P of J�, i.e. the set of
points where J� is not a submersion, has an image with zero measure (see Marrero
et al. (2010, Lemma 3.4) or Blankenstein and Ratiu (2004, pg. 212)). Nevertheless,
the whole image of J� may also be a zero measure subset and, in this case, it may
happen that J� is not a submersion at points in a dense subset of P . Indeed, J� is not a
submersion at any point in P when k dim g∗ > dim P . In such a case, J� has no regular
points in g∗k . That is one of the reasons why the analysis of weak regular values for k-
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polysymplectic momentum maps in de Lucas et al. (2023) is relevant. It also explains
why in the symplectic case, when k = 1, the assumption of J� being a submersion is
not so problematic. Note also that one has to assume some regularity conditions on the
coordinates of J�

1 , . . . , J�
k to ensure that their level sets are submanifolds, but such

mappings do not use to have regular values in k-polysymplectic problems for k > 1.
It is also worth stressing that Blacker in Blacker (2019, Theorem 3.22) does not

provide any explicit assumption in the structure of J�−1(μ), although it is implicitly
assumed that J�−1(μ) is a manifold. In general, Blacker’s work (Blacker 2019) does
not analyse in detail the technical conditions on the manifold structure of J�−1(μ).
Notwithstanding, the structure of spaces of the form J�−1(μ)/Gμ is investigated.

Lemma 3.2 below will be used to characterise in the next section the so-
called k-polysymplectic relative equilibrium points of G-invariant ω-Hamiltonian
systems. More importantly, Lemma 3.2 is introduced to prove k-polysymplectic
Marsden–Weinstein reduction theorems. The proof of Lemma 3.2 appears in de
Lucas et al. (2023). Interestingly, Günther’s wrong version of Lemma 3.2 made his
k-polysymplectic reduction to be flawed. In fact, Günther states in Günther (1987,
Lemma 7.5) a wrong expression for condition (1) in Lemma 3.2. In his work, Günther
implicitly claims that, as in the symplectic case, one has

ker ι∗μω = Tp

(
J�−1(μ)

)⊥,k ∩ Tp

(
J�−1(μ)

)
= Tp(Gp) ∩ Tp

(
J�−1(μ)

)

= Tp(G
�
μ p),

but the equality between the second and the third expressions is only an inclusion
⊃ (see Marrero et al. (2015, pg. 12)). It is worth stressing that Günther justifies his
Lemma 7.5 by merely saying that its proof is like in the symplectic case (Günther
1987, pg. 48). Moreover, Munteanu et al. (2004) includes a related mistake. Finally,
we refer to Marrero et al. (2015, Sections 1 and 2.2) for a comment on these errors.

Lemma 3.2 Let (P,ω, h, J�) be a G-invariant ω-Hamiltonian system and let μ ∈
(g∗)k be a weak regular value of J� : P → (g∗)k . Then, for every p ∈ J�−1(μ), one
has

(1) Tp(G�
μ p) = Tp(Gp) ∩ Tp

(
J�−1(μ)

)
,

(2) Tp(J�−1(μ)) = Tp(Gp)⊥,k .

Let us review the conditions of the k-polysymplecticMarsden–Weinstein reduction
theorem, which will be crucial in the k-polysymplectic energy–momentum method
to correct a mistake in one of the main results in García-Toraño Andrés and Mestdag
(2023), in fact, the one, García-Toraño Andrés and Mestdag (2023, Proposition 1),
giving the name to the paper.

Recall that the first correct k-polysymplectic Marsden–Weinstein reduction the-
ory can be found in Marrero et al. (2015). The necessary and sufficient conditions to
perform a reductionwere given byC. Blacker in Blacker (2019), although there is a rel-
evant typo in his theorem, as commented inGarcía-TorañoAndrés andMestdag (2023).
The k-polysymplectic Marsden–Weinstein reduction theorem was proved in Marrero
et al. (2015) assuming that the k-polysymplectic momentum map J� : P → (g∗)k
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is Ad∗k-equivariant. A version of the k-polysymplectic Marsden–Weinstein reduction
theorem without this condition was accomplished in de Lucas et al. (2023). In its
correct and most modern form, the reduction theorem reads as in Theorem 3.3 below
(see Lucas et al. (2023, Theorem 5.10) for details). Note that when we say that μ is a
weakly regular value of J�, we also assume that all the components of μ are weakly
regular too. It is worth stressing that even if μ is a regular value of J�, then each
component μα of μ does not need to be regular for J�

α since J�−1
α (μα) ⊃ J�−1(μ).

Theorem 3.3 (k-polysymplectic Marsden–Weinstein reduction theorem) Consider a
G-invariant ω-Hamiltonian system (P,ω, h, J�). Assume that μ = (μ1, . . . , μk) ∈
(g∗)k is a weak regular value of J� and G�

μ acts in a quotientable manner on J�−1(μ).

Let G�α

μα denote the isotropy group at μα of the Lie group action �α : (g, ϑ) ∈
G × g∗ �→ �α(g, ϑ) ∈ g∗ for α = 1, . . . , k. Moreover, let the following (sufficient)
conditions hold

ker(TpJ�
α ) = Tp(J�−1(μ)) + ker ωα

p + Tp(G
�α

μα p), α = 1, . . . , k, (3.1)

Tp(G
�
μ p) =

k⋂

α=1

(
ker ωα

p + Tp(G
�α

μα p)
)

∩ Tp(J�−1(μ)), (3.2)

for every p ∈ J�−1(μ). Then, (J�−1(μ)/G�
μ ,ωμ) is a k-polysymplectic manifold,

with ωμ being uniquely determined by

π∗
μωμ = j∗

μω

where jμ : J�−1(μ) ↪→ P is the canonical immersion and πμ : J�−1(μ) →
J�−1(μ)/G�

μ is the canonical projection.

The following theorem shows the reduction of the dynamics given by an ω-
Hamiltonian vector field Xh on P as a consequence of Theorem 3.3, which will
be essential for our k-polysymplectic energy–momentum method. Note that in previ-
ous works on k-polysymplectic Marsden–Weinstein reductions, the k-polysymplectic
Marsden–Weinstein reduction theorem has been applied to reduce the dynamics given
by an ω-Hamiltonian k-vector field (Marrero et al. 2015, Theorem 4.4). Nevertheless,
since our k-polysymplectic Marsden–Weinstein reduction theorem concerns just ω-
Hamiltonian vector fields, the conditions of that theorem can be simplified as follows.

Theorem 3.4 Let (P,ω, h, J�) be a G-invariant ω-Hamiltonian system and let
�g∗h = h for each g ∈ G. Then, the one-parametric group of diffeomorphisms
Ft of the vector field Xh induces the one-parametric group of diffeomorphisms Ft of
the vector field X f μ

on J�−1(μ)/G�
μ such that ιX fμ

ωμ = d f μ and j∗
μh = π∗

μ f μ.

Proof First, note that �∗
gh = h and our assumptions, in particular �∗

gω = ω, yield
�g∗Xh = Xh for each g ∈ G. Therefore,

ιXhd〈J�, ξ 〉 = −ιξP ιXhω = −ιξP dh = 0, ∀ξ ∈ g.
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Hence, Xh is tangent to J�−1(μ). Next, for every ξ ∈ g, we have

ι[ξP ,Xh]ω = LξP ιXhω − ιξPLXhω = 0,

so by the virtue of ker ω = 0, we obtain that [ξP , Xh] = 0. Thus, the vector field Xh
projects onto a vector field Y on the reduced manifold J�−1(μ)/G�

μ . In other words,
the one-parametric group of diffeomorphisms Ft of Xh induces the one-parametric
group of diffeomorphisms Ft of Y so that πμ ◦ Ft = Ft ◦ πμ for each t ∈ R. Then,
by Theorem 3.3, one has

j∗
μdh = j∗

μ(ιXhω) = ιXhj
∗
μω = ιXhπ

∗
μωμ,= π∗

μ(ιYωμ), (3.3)

where we denoted by Xh both the vector field Xh on P itself and its restriction to
J�−1(μ). The same slight abuse of notation will be hereafter done to simplify the
notation.

Due to the invariance of h relative toG�
μ , there exists a reducedR

k-valued function
f μ on J�−1(μ) such that j∗

μh = π∗
μ f μ. Finally, expression (3.3) gives

π∗
μd f μ = j∗

μdh = π∗
μιYωμ

which shows that Y = X f μ
is an ωμ-Hamiltonian vector field and f μ is an ωμ-

Hamiltonian function associated with X f μ
. ��

Now, let us recall the sufficient and necessary conditions for a k-polysymplectic
reduction given by Blacker in (3.4). His main result is described in Theorem 3.5
with our notation and we have corrected the typo in Blacker (2019, Theorem 3.22)
on the k-polysymplectic Marsden–Weinstein reduction. It is worth noting that the
typo also appears in the proof of Blacker (2019, Theorem 3.22) and is evident after
applying Blacker (2019, Theorem 2.14) toωx . Theorem 3.5 also adds certain essential
technical conditions that were not explicitly written in Blacker (2019, Theorem 3.22).
As remarked by Blacker in Blacker (2019), but apparently not noticed by Mestdag
and García-Toraño in García-Toraño Andrés and Mestdag (2023), the sufficient and
necessary condition (3.4) also appeared previously to Blacker in a different more
implicit manner in Marrero et al. (2015, pg. 12). It is worth seeing also the related
work (Martinez 2015) treating the reduction of poly-Poisson structures.

Theorem 3.5 Let (P,ω, h, J�) be an Ad∗k-equivariant G-invariant ω-Hamiltonian
system and let μ ∈ (g∗)k be a fixed regular value of J�. If the stabiliser subgroup
Gμ of μ under the Ad∗k action is connected, and Pμ = J�−1(μ)/Gμ is a smooth
manifold, then there is a unique R

k-valued two-form ωμ ∈ �2(Pμ,Rk) such that
π∗

μωμ = j∗
μω where jμ : J�−1(μ) ↪→ P is the inclusion and πμ : J�−1(μ) → Pμ is

the canonical projection. The form ωμ is closed and nondegenerate if and only if

Tp(Gμ p) = (Tp(Gp)⊥,k)⊥,k ∩ Tp(Gp)⊥,k, ∀p ∈ J�−1(μ). (3.4)

For the sake of completeness, let us now consider the first example of a k-
polysymplectic Marsden–Weinstein reduction related to a non-regular value of a
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k-polysymplectic momentum map. More examples with potential practical applica-
tions will be shown in Sect. 5. Let us analyse the completely integrable, and separable
in variables, system in R2k of the form

dIα
dt

= 0,
dθα

dt
= Fα(Iα), α = 1, . . . , k > 1, (3.5)

for some arbitrary functions F1, . . . , Fk : R → R. This related to anω-polysymplectic
Hamiltonian system onR2k relative to the k-polysymplectic formω = ωα ⊗eα , where
ω1, . . . , ωk are the presymplectic forms

ωα = dθα ∧ dI α, α = 1, . . . , k,

where it is important to stress that the right-hand side is not summed over the indices
α = 1, . . . , k. One has the basis of fundamental vector fields ∂/∂θ1, . . . , ∂/∂θk−1

associated with the Lie group action

� : (λ1, . . . , λk−1; θ1, . . . , θk, I )

∈ R
k−1 × R

2k �→ (λ1 + θ1, . . . , λk−1 + θk−1, θk, I ) ∈ R
2k,

with I = (I1, . . . , Ik) ∈ R
k . Note that the functions F1, . . . , Fk have been chosen to be

of the form Fα = Fα(Iα), with α = 1, . . . , k, to ensure that (3.5) is ω-Hamiltonian.
The latter also explains why (3.5) is called separable. One may now consider a k-
polysymplectic momentum map

J� : (θ, I ) ∈ R
2k �−→ (I1, . . . , 0) ⊗ e1 + . . . + (0, . . . , Ik−1) ⊗ ek−1 + (0, . . . , 0)

⊗ek ∈
(
R

(k−1)∗)k ,

which has no regular points (the codomain of J� has dimension larger than its domain
for k > 3) and it is Ad∗k-equivariant. Note that (3.5) gives rise to an R

k−1-invariant
ω-Hamiltonian system.

One may consider the reductions ofω and (3.5) for any value ofμ = (μ1, . . . , 0)⊗
e1 + . . . + (0, . . . , μk−1) ⊗ ek−1 ∈ (R(k−1)∗)k . Then,

J�−1(μ) = {(θα, Iα) ∈ R
2k | I1 = μ1, . . . , Ik−1 = μk−1, θ1, . . . , θk, Ik ∈ R}

� R
k × R.

The isotropy subgroupRk−1
μ � R

k−1 acts on J�−1(μ) via� and the reducedmanifold
is diffeomorphic to R

2. The presymplectic forms ω1, . . . , ωk−1 become zero after
reducing, but the reductionofωk is symplectic.Hence,ωμ becomes a k-polysymplectic
form with only one symplectic form different from zero. Since the ω-Hamiltonian
function of the initial system is a first integral of the θ1, . . . , θk−1, one can project the
initial system onto
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dIk
dt

= 0,
dθk
dt

= Fk(Ik),

which is Hamiltonian relative to dθk ∧ dIk , where θk, Ik are considered as variables
in R2 in the natural manner.

3.2 On the Conditions for the kPolysymplectic Marsden–Weinstein Reduction

It was claimed inGarcía-TorañoAndrés andMestdag (2023, Proposition 1) that condi-
tion (3.2) is enough to ensure that there exists a k-polysymplectic Marsden–Weinstein
reduction. In this section, we first show that this is not true and the proposition in
García-Toraño Andrés and Mestdag (2023, Proposition 1) is incorrect. This is done
by pointing out a mistake in the proof of García-Toraño Andrés and Mestdag (2023,
Proposition 1) and then giving a counterexample where (3.2) is satisfied, but there is
no k-polysymplectic Marsden–Weinstein reduction and, indeed, (3.1) does not hold.
Next, we illustrate that it may happen that (3.1) is satisfied, but (3.2) is not. Finally,
we prove an example of a possible k-polysymplectic reduction where (3.1) and (3.2)
are not simultaneously satisfied. To keep our exposition simple and highlight our main
ideas, we restrict in this subsection all k-polysymplectic momentummaps to the Ad∗k-
invariant case, as done in García-Toraño Andrés and Mestdag (2023), Marrero et al.
(2015).

First, the proof for García-Toraño Andrés and Mestdag (2023, Proposition 1) has
a mistake, as there is an inclusion written in the opposite way. In particular, since
Tp(J�−1(μ)) ⊂ Tp(J�−1

α (μα)) for α = 1, . . . , k and every p ∈ J�−1(μ) for a
regular μ ∈ g∗k , one has

{
v ∈ Tp P | ω1(v,TpJ

�−1
1 (μ1)) = · · · = ωk(v,TpJ

�−1
k (μk)) = 0

}

⊂
{
v ∈ Tp P | ω1(v,TpJ�−1(μ)) = · · · = ωk(v,TpJ�−1(μ)) = 0

}

instead of

{
v ∈ Tp P | ω1(v,TpJ

�−1
1 (μ1)) = · · · = ωk(v,TpJ

�−1
k (μk)) = 0

}

⊃
{
v ∈ Tp P | ω1(v,TpJ�−1(μ)) = · · · = ωk(v,TpJ�−1(μ)) = 0

}

as claimed at the end of page 8 in the proof of García-Toraño Andrés and Mestdag
(2023, Proposition 1). In other words, if v is perpendicular to Tp(J�−1(μ)) relative
to each ωα , one cannot infer that v is perpendicular to each Tp(J�−1

α (μα)) relative to
ωα for α = 1, . . . , k, since the latter conditions are more restrictive. Then, the proof
of García-Toraño Andrés and Mestdag (2023, Proposition 1) only gives

k⋂

α=1

(ker j∗
μαωα|p) ∩ TpJ�−1(μ) ⊂ (Tp(Gp)⊥,k)⊥,k ∩ Tp(Gp)⊥,k, ∀p ∈ J�−1(μ),
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instead of the claimed

k⋂

α=1

(ker j∗
μαωα|p) ∩ TpJ�−1(μ) ⊃ (Tp(Gp)⊥,k)⊥,k ∩ Tp(Gp)⊥,k, ∀p ∈ J�−1(μ),

which makes the proof of Proposition 1 fail in proving (3.4), namely the k-
polysymplecticMarsden–Weinstein reduction necessary and sufficient condition, and,
therefore, the statement of Proposition 1. Indeed, the above mistake is ultimately due
to the fact that García-Toraño Andrés and Mestdag (2023, Proposition 1) is false and
the comments that follow in García-Toraño Andrés and Mestdag (2023) contain some
inaccuracies.

Let us provide a counterexample to show that García-Toraño Andrés and Mestdag
(2023, Proposition 1) does not hold.More specifically, we here describe anR-invariant
ω-Hamiltonian system relative to a two-symplectic form satisfying condition (3.2) but
not giving rise to a k-polysymplectic Marsden–Weinstein reduction. Before that, it is
convenient to recall some results from Marrero et al. (2015).

It was proved in Marrero et al. (2015) that ker ωα
p ⊂ ker TpJ�

α on J�−1(μ), which
allows one to define the following commutative diagram (see Marrero et al. (2015, pg.
12))

Tp(J�−1(μ)) ker TpJ�
α

ker TpJ�
α

ker ωα
p

j

πα
p

π

for all p ∈ J�−1(μ), where j and π are the canonical injection and projections,
respectively. For simplicity, the equivalence class of an element v in a quotient will be
denoted by [v]. To avoid making the notation too complicated, the specific meaning of
[v] will be understood from context. According to Proposition 3.12 in Marrero et al.
(2015), the above diagram induces the maps

π̃α
p : Tp(J�−1(μ))

Tp(Gμ p)
−→

ker TpJ�
α

ker ωα
p

{[(ξP)p] | ξ ∈ gμα } , α = 1, . . . , k, ∀p ∈ J�−1(μ),

where gμα is the Lie algebra of Gμα and {[(ξP)p] | ξ ∈ gμα } = prPα ({(ξP)p | ξ ∈
gμα }) and prPα : Tp P → Tp P/ ker ωα

p is the canonical projection onto the quotient.
The conditions (3.1) at p ∈ P are equivalent to each π̃α

p being surjective, respec-

tively (Marrero et al. 2015, Lemma 3.15), while (3.2) amounts to 0 = ⋂k
α=1 ker π̃

α
p

(see (Marrero et al. 2015, Lemma 3.16)).
Consider P = R

4 with linear coordinates {x, y, z, t} and the presymplectic forms

ω1 = dx ∧ dy, ω2 = dx ∧ dt + dy ∧ dz,
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which give rise to a two-polysymplectic form ω = ω1 ⊗ e1 + ω2 ⊗ e2, because
ω2 is a symplectic form and ker ω1 ∩ ker ω2 = 0. Consider the Lie group action
� : (λ; x, y, z, t) ∈ R×R

4 �→ (x +λ, y, z, t) ∈ R
4. The Lie algebra of fundamental

vector fields of � is V = 〈∂x 〉 � R. Moreover, � admits a two-polysymplectic
momentum map relative to (R4,ω) given by

J� : (x, y, z, t) ∈ R
4 �−→ μ = (y, t) ∈ (R∗)2,

which is clearly Ad∗2-equivariant. Additionally, J� is regular for every value of (R∗)2.
Hence, J�−1(y, t) = {(x, y, z, t) ∈ R

4 : x, z ∈ R} � R
2 is a submanifold for every

(y, t) ∈ (R∗)2 and

Tp(J�−1(y, t)) = 〈∂x , ∂z〉, ∀p ∈ J�−1(y, t).

Moreover, Gμ = R for each μ = (y, t) ∈ (R∗)2 and Gμ acts freely and properly
on J�−1(μ). Let us prove that condition (3.2) does not imply nor the reduction of ω,
namely (3.4), neither (3.1).

In our example, one has μ = (y, t) with μ1 = y and μ2 = t , while

ker TpJ�
1 = 〈∂x , ∂z, ∂t 〉, ker ω1 = 〈∂t , ∂z〉, ker TpJ�

2 = 〈∂x , ∂y, ∂z〉, ker ω2 = 0,

and

{[(ξP)p] : ξ ∈ gμ1} = 〈[∂x ]〉, {[(ξP)p] : ξ ∈ gμ2} = 〈[∂x ]〉

on J�−1(μ). Then, we have the mappings

π̃1
p : 〈[∂z]〉 = Tp(J�−1(μ))/Tp(Gμ p) �−→ 〈0〉 = (ker TpJ�

1 / ker ω1
p)/〈[∂x ]〉

and

π̃2
p : 〈[∂z]〉 = Tp(J�−1(μ))/Tp(Gμ p) �−→ 〈[∂y], [∂z]〉 = (ker TpJ�

2 / ker ω2
p)/〈[∂x ]〉.

As π̃2
p([∂z]) = [∂z], we have

ker π̃1
p = 〈[∂z]〉, ker π̃2

p = 〈0〉.

Hence, ker π̃1
p ∩ ker π̃2

p = 0 and condition (3.2) is satisfied. But Im π̃2
p = 〈[∂z]〉 and

π̃2
p is not surjective. Thus, condition (3.1) does not hold for α = 2 in our example.

In fact, ω1, ω2 become isotropic when restricted to J�−1(μ) and give rise to two zero
differential two-forms on J�−1(μ)/Gμ, which is a one-dimensional manifold. Hence,
no two-symplectic manifold is induced on J�−1(μ)/Gμ despite that condition (3.2)
is satisfied.

One can directly prove that condition (3.2) is satisfied in the previous example,
but condition (3.1) is not. This shows more easily that Proposition 1 in García-Toraño
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Andrés andMestdag (2023) is false and that (3.2) does not imply (3.1), but our previous
approach illustrates how we obtained our counterexample. Indeed, in our present
counterexample, the fact that π̃2

p is not surjective implies that (3.1) does not hold.
Recall that

ker TpJ�
2 = 〈∂x , ∂y, ∂z〉, ∀p ∈ J�−1(μ),

while

Tp(J�−1(μ)) + ker ω2
p + Tp(Gμ2 p)

= 〈∂x , ∂z〉 + {0} + 〈∂x 〉 = 〈∂x , ∂z〉, ∀p ∈ J�−1(μ).

On the other hand, condition (3.2) is satisfied since

Tp(Gμ p) = 〈∂x 〉

and

(ker ω1
p + Tp(Gμ1 p)) ∩ (ker ω2

p + Tp(Gμ2 p)) ∩ Tp(J�−1(μ)) = 〈∂x 〉,

reads

(〈∂t , ∂z〉 + 〈∂x 〉) ∩ (〈0〉 + 〈∂x 〉) ∩ 〈∂x , ∂z〉 = 〈∂x 〉.

Since this example is constructed so as to obtain a one-dimensional reduced manifold,
it is known that the reduction of the two-polysymplectic form is not a k-polysymplectic
form.

The following examples illustrate some relations between the conditions (3.1), (3.2)
and the existence of k-polysymplectic Marsden–Weinstein reductions.

Example 3.6 This example shows that if condition (3.1) is satisfied, then condition
(3.2) does not need to hold. Consider a two-polysymplectic manifold (R6,ω). Let
{x1, x2, x3, x4, x5, x6} be global linear coordinates on R

6 and define

ω = ω1 ⊗ e1 + ω2 ⊗ e2 = (dx1 ∧ dx2 + dx5 ∧ dx6) ⊗ e1
+(dx3 ∧ dx4 + dx5 ∧ dx6) ⊗ e2.

Then, ker ω1
p = 〈∂3, ∂4〉, ker ω2

p = 〈∂1, ∂2〉, and ker ω1
p∩ker ω2

p = 0 for every p ∈ R
6.

This turns ω into a two-polysymplectic form.
Let us provide now a Lie group action proving our initial claim. Given the Lie group

action� : (λ; x1, x2, x3, x4, x5, x6) ∈ R×R
6 �→ (x1+λ, x2, x3+λ, x4, x5, x6) ∈ R

6,
its Lie algebra of fundamental vector fields reads 〈∂1 + ∂3〉. The two-polysymplectic
momentum map associated with � is given by

J� : (x1, x2, x3, x4, x5, x6) ∈ R
6 �−→ (x2, x4) = μ ∈ (R∗)2,
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which is Ad∗2-equivariant.Moreover, everyμ = (x2, x4) ∈ (R∗)2 is a regular value of
J�. Therefore, J�−1(μ) = {(x1, x2, x3, x4, x5, x6) ∈ R

6 : x1, x3, x5, x6 ∈ R} � R
4

is a submanifold of R6 for every μ ∈ (R∗)2 and

Tp(J�−1(μ)) = 〈∂1, ∂3, ∂5, ∂6〉, ∀p ∈ J�−1(μ).

Hence, ker TpJ�
1 = 〈∂1, ∂3, ∂4, ∂5, ∂6〉 while ker TpJ�

2 = 〈∂1, ∂2, ∂3, ∂5, ∂6〉. Condi-
tion (3.1) holds because both sides of the condition are equal to

〈∂1, ∂3, ∂4, ∂5, ∂6〉 = 〈∂1, ∂3, ∂5, ∂6〉 + 〈∂3, ∂4〉 + 〈∂1 + ∂3〉,
〈∂1, ∂2, ∂3, ∂5, ∂6〉 = 〈∂1, ∂3, ∂5, ∂6〉 + 〈∂1, ∂2〉 + 〈∂1 + ∂3〉,

for J�
1 , J�

2 , respectively. However, condition (3.2) is not satisfied, namely

2⋂

α=1

(
ker ωα

p + Tp(Gμα p)
)

∩ TpJ�−1(μ)

= (〈∂3, ∂4〉 + 〈∂1 + ∂3〉) ∩ (〈∂1, ∂2〉 + 〈∂1 + ∂3〉) ∩ 〈∂1, ∂3, ∂5, ∂6〉
= 〈∂1, ∂3〉 �= 〈∂1 + ∂3〉 = Tp(Gμ p),

for any p ∈ J�−1(μ). By Marrero et al. (2015, Lemmas 3.15 and 3.16), one has that
π̃1
p and π̃2

p are surjective but ker π̃1
p ∩ ker π̃2

p �= 0. One can also verify this fact by
computing π̃α

p for α = 1, 2. Namely, this follows from

π̃1
p : 〈[∂1], [∂5], [∂6]〉 ∈ Tp(J�−1(μ))/Tp(Gμ p)

�−→ 〈[∂5], [∂6]〉 = (ker TpJ�
1 / ker ω1

p)/〈[∂1 + ∂3]〉.
π̃2
p : 〈[∂1], [∂5], [∂6]〉 ∈ Tp(J�−1(μ))/Tp(Gμ p)

�−→ 〈[∂5], [∂6]〉 = (ker TpJ�
2 / ker ω2

p)/〈[∂1 + ∂3]〉.

for all p ∈ J�−1(μ). Note that [∂1 + ∂3] = [∂1] in the first line, while [∂1 + ∂3] = [∂3]
in the second. �
Example 3.7 Let us prove that the k-polysymplectic Marsden–Weinstein reduction
theorem in Marrero et al. (2015) gives sufficient, but not necessary conditions for
the reduction to hold. In this respect, there are cases where the reduction is possible,
condition (3.2) holds, while condition (3.1) does not. To illustrate this, let us con-
sider a two-polysymplectic manifold (R7,ω), where {x1, . . . , x7} are global linear
coordinates and

ω = ω1 ⊗ e1 + ω2 ⊗ e2
= (dx1 ∧ dx2 + dx5 ∧ dx7 + dx3 ∧ dx6) ⊗ e1 + (dx3 ∧ dx4 + dx5 ∧ dx6) ⊗ e2 .

This give rise to a two-polysymplectic structure on R7 since ker ω1 = 〈∂4〉, ker ω2 =
〈∂1, ∂2, ∂7〉 and ker ω1 ∩ ker ω2 = 0. Consider the Lie group action � : R × R

7 →
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R
7 corresponding to translations along the x5 coordinate. Then, its Lie algebra of

fundamental vector fields is 〈∂5〉. A two-polysymplectic momentum map associated
with � reads

J� : (x1, x2, x3, x4, x5, x6, x7) ∈ R
7 �−→ (x7, x6) = μ ∈ (R2)∗.

Note that J� is Ad∗2-equivariant and every μ ∈ R
2∗ is a regular value of J�. Then,

J�−1(μ) = {(x1, x2, x3, x4, x5, x6, x7) ∈ R
7 | x1, x2, x3, x4, x5 ∈ R} � R

5

is a submanifold of R7 for every μ = (x7, x6) ∈ R
2 and

Tp(J�−1(μ)) = 〈∂1, ∂2, ∂3, ∂4, ∂5〉, ∀p ∈ J�−1(μ).

Condition (3.2) is satisfied, while (3.1) for J�
1 is not since

π̃1
p : 〈[∂1], [∂2], [∂3], [∂4]〉 ∈ Tp(J�−1(μ))/Tp(Gμ p) �→ 〈[∂1], [∂2], [∂3], [∂6]〉
= (ker TpJ�

1 / ker ω1
p)/〈[∂5]〉.

Therefore, π̃1
p is not surjective. However, the reduced manifold Pμ = Tp(J�−1(μ))/

Tp(Gμ p) � R
4 inherits a two-polysymplectic form, namely

ωμ = dx1 ∧ dx2 ⊗ e1 + dx3 ∧ dx4 ⊗ e2,

in the variables x1, x2, x3, x4 naturally defined in Pμ. In summary, both conditions
(3.1) and (3.2) ensure a k-polysymplectic Marsden–Weinstein reduction. But they are
not necessary, they are only sufficient. �

3.3 On the k-Polysymplectic Manifold Given by the Product of k Symplectic
Manifolds

Let us review a relevant example of k-polysymplecticmanifold and apply Theorem 3.3
to it (seeMarrero et al. (2015) for details). Thiswill illustrate how the k-polysymplectic
reduction theorem works. Remarkably, many practical examples have a related k-
polysymplectic manifold similar to the one in this section. Moreover, this structure
will be used in one of the physical examples studied in Sect. 5.

Let P = P1×· · ·× Pk for some symplectic manifolds (Pα, ωα)with α = 1, . . . , k.
If prα : P → Pα is the canonical projection onto the α-th component, Pα , in P ,
then (P,ω = ∑k

α=1 pr
∗
α ωα ⊗ eα) is a k-polysymplectic manifold. To simplify the

notation, we will write pr∗α ωα as ωα . Moreover, assume that a Lie group action �α :
Gα × Pα → Pα admits a symplectic momentum map J�α : Pα → g∗

α and each �α

acts in a quotientable manner on the level sets given by weak regular values of J�α

for each α = 1, . . . , k.
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Define the Lie group action

� : (g1, . . . , gk, x1, . . . , xk) ∈ G × P �−→ (�1
g1(x1), . . . , �

k
gk (xk)) ∈ P. (3.6)

Then, g = g1 × · · · × gk is the Lie algebra of G and we have the k-polysymplectic
momentum map

J : (x1, . . . , xk) ∈ P �−→ (0, . . . , Jα, . . . , 0) ⊗ eα ∈ g∗k,

where Jα(x1, . . . , xk) = J�α
(xα) for α = 1, . . . , k and g∗ = g∗

1 ×· · ·× g∗
k is the dual

space to g. Suppose, that μα ∈ g∗
α is a weak regular value of J�α : Pα → g∗

α for each
α = 1, . . . , k. Hence, μ = (0, . . . , μα, . . . , 0) ⊗ eα ∈ (g∗)k is a weak regular value
of J. Then, � acts in a quotientable on the level sets of J.

Therefore, if p = (x1, . . . , xk) ∈ J−1(μ), it follows that

ker TpJ�α = Tx1 P1 ⊕ · · · ⊕ ker TxαJ
�α ⊕ · · · ⊕ Txk Pk ,

Tp

(
J−1(μ)

)
= ker Tx1J

�1 ⊕ · · · ⊕ ker TxkJ
�k

,

ker ωα
p = Tx1 P1 ⊕ · · · ⊕ Txα−1 Pα−1 ⊕ {0} ⊕ Txα+1 Pα+1 ⊕ · · · ⊕ Txk Pk ,

Tp

(
G�α

μα p
)

= Tx1 (G1x1) ⊕ · · · ⊕ Txα

(
G�α

αμα xα

)
⊕ · · · ⊕ Txk (Gkxk) ,

Tp

(
G�

μ p
)

= Tx1

(
G�1

1μ1x1
)

⊕ · · · ⊕ Txk

(
G�k

kμk xk
)

.

Then, it follows immediately that

ker TpJ�α = Tp

(
J−1(μ)

)
+ ker ωα

p + Tp

(
G�α

μα p
)

, α = 1, . . . , k,

and

Tp

(
G�

μ p
)

=
k⋂

β=1

(
ker ωβ

p + Tp

(
G�β

μβ p
))

∩ Tp

(
J−1(μ)

)
,

for every weakly regular μ ∈ (g∗)k and p ∈ J−1(μ). Recall that, by Theorem 3.3,
these equations guarantee that the reduced space J−1(μ)/G�

μ can be endowed with a
k-polysymplectic structure, while

J−1(μ)/G�
μ � J�1−1(μ1)/G�1

1μ1 × · · · × J�k−1(μk)/G�k

kμk .

�
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4 The k-Polysymplectic EnergyMomentum-Method

4.1 k-Polysymplectic Relative Equilibrium Points

This section introduces the notion of k-polysymplectic relative equilibrium point rel-
ative to an ω-Hamiltonian vector field X . This notion is devised to analyse the relative
stability of ω-Hamiltonian vector fields and extends the relative equilibrium point
notion for symplectic manifolds to the k-symplectic realm (see Abraham and Mars-
den 1978 for details on the symplectic case). In brief, a relative equilibrium point for
a dynamical system given by a vector field is a point whose evolution is given by Lie
group symmetries of the vector field. If the vector field is additionally Hamiltonian
relative to some geometric structure, then it is usual to demand the Lie group symme-
tries to leave invariant the same geometric structure (Lucas et al. 2024). It is generally
interesting to analyse the behaviour of solutions close to relative equilibrium points,
i.e. if they get closer or move away from those points.

Definition 4.1 Let (P,ω, h, J�) be aG-invariantω-Hamiltonian system.A point ze ∈
P is a k-polysymplectic relative equilibrium point of the ω-Hamiltonian vector field
Xh if there exists ξ ∈ g so that

(Xh)(ze) = (ξP )(ze).

The above definition retrieves, for k = 1, the standard relative equilibriumnotion for
symplectic Hamiltonian systems (Abraham andMarsden 1978). Furthermore, Lemma
3.2 and the fact that Xh is tangent to the level sets of J� show that ξ ∈ g in Definition
4.1 is, in fact, an element of g�

μe
, which is a Lie subalgebra of g, and μe = J�(ze).

Note that a k-polysymplectic relative equilibrium point ze ∈ P projects onto
πμe (ze), with μe = J�(ze), which becomes an equilibrium point of the vector field
X f μe

, obtained by projection of Xh onto the reduced space J�−1(μe)/G
�
μe
. This

explains the term relative used in the relative equilibrium point term.
The following theorem provides the characterisation of k-polysymplectic relative

equilibrium points of an ω-Hamiltonian vector field Xh by studying the critical points
of a modified R

k-valued function hξ on P . This is an application of the Lagrange
multiplier theorem, where the role of the multiplier is played by ξ ∈ g.

Theorem 4.2 Let (P,ω, h, J�) be a G-invariantω-Hamiltonian system. Then, ze ∈ P
is a k-polysymplectic relative equilibrium point of Xh if and only if there exists ξ ∈ g
such that ze is a critical point of the following Rk-valued function

hξ := h − 〈J� − μe, ξ 〉, (4.1)

where μe := J�(ze) ∈ (g∗)k .

Proof Let ze be a k-polysymplectic relative equilibrium point of Xh, i.e. Xh(ze) =
ξP (ze) for some ξ ∈ g. Then,

dhξ (ze) = d(h − 〈J�, ξ 〉)(ze) = (ιXh−ξPω)(ze) = 0.
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Hence, ze ∈ P is a critical point of the Rk-valued function hξ .
Conversely, assume that ze is a critical point of some hξ with ξ ∈ g. Then, 0 =

dhξ (ze) = (ιXh−ξPω)(ze) = 0 and (Xh − ξP )(ze) ∈ ker ωze . Since ker ω = 0, one
has that Xh(ze) = ξP (ze). Hence, ze is a k-polysymplectic relative equilibrium point
of Xh. ��
Example 4.3 (The cotangent bundle of two-covelocities of R

2) Let Q be an n-
dimensional manifold and let πQ : T∗Q → Q be the cotangent bundle projection.

Consider the Whitney sum
⊕k T∗Q = T∗Q ⊕Q

(k)· · · ⊕Q T∗Q of k copies of T∗Q and
the projection πk

Q : ⊕k T∗Q → Q. It is well-known that
⊕k T∗Q can be identified

with the space of one-jets, J 1(Q,Rk)0, of maps γ : Q → R
k with γ (q) = 0, via the

diffeomorphism j1q γ ∈ J 1(Q,Rk)0 �→ (
dγ 1(q), . . . , dγ k(q)

) ∈ ⊕k T∗Q, where

γ α is the α-th component of γ (de León et al. 2015). Then,
⊕k T∗Q is called the

cotangent bundle of k-covelocities of Q. Moreover, J 1(Q,Rk)0 is a k-polysymplectic
manifold (see de León et al. 2015 for details).

The following example will illustrate our k-polysymplectic energy–momentum
method. Consider that (R6,ω) is a two-polysymplectic manifold with the two-
polysymplectic form

ω = ω1 ⊗ e1 + ω2 ⊗ e2 = (dx1 ∧ dx3 + dx2 ∧ dx4) ⊗ e1
+ (dx1 ∧ dx5 + dx2 ∧ dx6) ⊗ e2

since

ker ω1 =
〈

∂

∂x5
,

∂

∂x6

〉

, ker ω2 =
〈

∂

∂x3
,

∂

∂x4

〉

,

and ker ω1 ∩ ker ω2 = 0. Let us consider the Lie group action � : R × R
6 → R

6

given by

� : (λ; x1, x2, x3, x4, x5, x6)
∈ R × R

6 �−→ (x1 + λ, x2 + λ, x3 + λ, x4 + λ, x5 + λ, x6 + λ) ∈ R
6.

The fundamental vector fields associated with the Lie group action � are spanned by

ξP = ∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ ∂

∂x4
+ ∂

∂x5
+ ∂

∂x6
.

Note that the Lie group action � is two-polysymplectic since it leaves ω invariant,
namely LξPω = 0. Then, � gives rise to a two-polysymplectic momentum map J�

for μ = (μ1, μ2) given by

J� : (x1, x2, x3, x4, x5, x6) ∈ R
6 �−→ (x3 + x4 − x1 − x2, x5 + x6 − x1 − x2)

= μ ∈ (R∗)2.
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Therefore, the level set of the two-polysymplectic momentum map J� has the follow-
ing form

J�−1(μ)

=
{
(x1, x2, x3, x4, x5, x6)∈R

6 | x3+x4−x1−x2 = μ1, x5+x6−x1−x2= μ2
}

.

(4.2)

Note that everyμ ∈ (R∗)2 is a regular value of a two-polysymplectic momentummap
J� and J�−1(μ) � R

4. Since � is defined on a connected one-dimensional Lie group
R = G, one has that J� is an Ad∗2-equivariant two-polysymplectic momentum map.
Then,

Tp(Gμ p) = Tp(Gμ1 p) = Tp(Gμ2 p) =
〈

∂

∂x1
+ ∂

∂x2
+ ∂

∂x3
+ ∂

∂x4
+ ∂

∂x5
+ ∂

∂x6

〉

,

ker TpJ�
1 =

〈
∂

∂x2
− ∂

∂x1
,

∂

∂x1
+ ∂

∂x3
,

∂

∂x1
+ ∂

∂x4
,

∂

∂x5
,

∂

∂x6

〉

,

ker TpJ�
2 =

〈
∂

∂x2
− ∂

∂x1
,

∂

∂x3
,

∂

∂x4
,

∂

∂x1
+ ∂

∂x5
,

∂

∂x1
+ ∂

∂x6

〉

,

Tp(J�−1(μ)) =
〈

6∑

i=1

∂

∂xi
,

∂

∂x3
− ∂

∂x4
,

∂

∂x2
+ ∂

∂x3
+ ∂

∂x5
,

∂

∂x1
− ∂

∂x2

〉

,

and one can verify that conditions (3.1) and (3.2) are fulfilled.
Recall that ιμ : J�−1(μ) ↪→ P is the natural immersion and πμ : J�−1(μ) →

J�−1(μ)/Gμ is the canonical projection. Then, remembering that the elements of the
Lie groupR act by translations onR6 via�, Theorem 3.3 yields that the reduced man-
ifold (J�−1(μ)/Gμ � R

3,ωμ) is a two-polysymplectic manifold with coordinates
(y1, y2, y3) ∈ R

3, satisfying that

y1 = x1 − x2 , y2 = x3 − x1 , y3 = x5 − x1 ,

y4 = x1 + x2 − x3 − x4 , y5 = x1 + x2 − x5 − x6 , y6 = x1 ,

with

ωμ = ω1
μ ⊗ e1 + ω2

μ ⊗ e2 = dy1 ∧ dy2 ⊗ e1 + dy1 ∧ dy3 ⊗ e2.

Next, let us consider an ω-Hamiltonian vector field, Xh, on P = R
6 whose ω-

Hamiltonian function is R-invariant. Then, Xh is tangent to each J�−1(μ), and it
will have the following form
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Xh = F1

6∑

i=1

∂

∂xi
+ F2

(
∂

∂x3
− ∂

∂x4

)

+ F3

(
∂

∂x2
+ ∂

∂x3
+ ∂

∂x5

)

+F4

(
∂

∂x1
− ∂

∂x2

)

,

for certain uniquely definedG-invariant F1, . . . , F4 ∈ C∞(P). Then, a point ze ∈ P is
a two-polysymplectic relative equilibrium point of Xh if and only if Xh(ze) = ξP (ze),
which holds, if and only if, F1(ze) = 1 and F2(ze) = F3(ze) = F4(ze) = 0. However,
let us verify that we obtain the same result using Theorem 4.2.

First, dh1 and dh2 read

dh1 = ιXhω
1 = − (F1 + F2 + F3) dx1

− (F1 − F2) dx2 + (F1 + F4) dx3 + (F1 + F3 − F4) dx4 ,

dh2 = ιXhω
2 = − (F1 + F3) dx1 − F1dx2 + (F1 + F4) dx5 + (F1 + F3 − F4) dx6 .

Then, Theorem 4.2 yields that ze ∈ P is a two-polysymplectic relative equilibrium
point of Xh if and only if dh1ξ (ze) = 0 and dh2ξ (ze) = 0 for some ξ ∈ R. Indeed,
using (4.2), one has

dh1ξ = dh1 − dJ 1ξ = − (F1 + F2 + F3 − ξ) dx1 − (F1 − F2 − ξ) dx2
+ (F1 + F4 − ξ) dx3 + (F1 + F3 − F4 − ξ) dx4, (4.3)

dh2ξ = dh2 − dJ 2ξ = − (F1 + F3 − ξ) dx1 − (F1 − ξ) dx2
+ (F1 + F4 − ξ) dx5 + (F1 + F3 − F4 − ξ) dx6, (4.4)

for ξ ∈ R. Since at ze both (4.3) and (4.4) must vanish, one gets that this happens
if and only if F1(ze) = ξ and F2(ze) = F3(ze) = F4(ze) = 0. Therefore, ze ∈ P
is a two-polysymplectic relative equilibrium point of Xh under the above-mentioned
conditions.

Finally, let us verify thatπμe (ze) is a critical point of the f α
μe

∈ C∞(J�−1(μe)/Gμe ).
The reduced vector field X f μe

has the form

X f μe
= (2F̃4 − F̃3)

∂

∂ y1
+ (F̃2 + F̃3 − F̃4)

∂

∂ y2
− F̃4

∂

∂ y3
,

where Fi = π∗
μe
F̃i for i = 2, 3, 4. Note that the projection exists because F2, F3, F4

are G-invariant. Then,

d f 1μe
(πμe (ze)) =

(
ιX fμe

ω1
μe

)

πμe (ze)

= (
2F̃4(πμe (ze)) − F̃3(πμe (ze))

)
dy2

+ (F̃4(πμe(ze)) − F̃2(πμe (ze)) − F̃3(πμe (ze))
)
dy1 = 0,
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and

d f 2μe
(πμe (ze)) =

(
ιX fμe

ω2
μe

)

πμe (ze)

= (
2F̃4(πμe (ze)) − F̃3(πμe (ze))

)
dy3 + F̃4(πμe(ze))dy1 = 0.

Indeed, πμe (ze) is a critical point of f μe
, hence ze ∈ P is a k-polysymplectic relative

equilibrium point of X f μe
.

4.2 Stability in the k-Polysymplectic EnergyMomentum-Method

Let us develop the stability analysis related to the k-polysymplectic energy–momentum
method relative to a k-polysymplectic manifold (P,ω). Recall that Theorem 4.2
characterises k-polysymplectic relative equilibrium points as critical points of the
R
k-valued function (4.1). However, when studying the stability of k-polysymplectic

relative equilibrium points, due to the symmetry of our problems, we need to inves-
tigate how the second variation of hξ in the directions tangent to the isotropy group
G�

μe
affects the positive definiteness of hξ . Note also that the results of this section

are concerned with cases when a k-polysymplectic reduction is possible and (3.4) is
satisfied.

Let us define the second variation of hξ at a k-polysymplectic relative equilibrium
point ze ∈ J�−1(μe) as the mapping (δ2hξ )ze : Tze (J

�−1(μe)) × Tze (J
�−1(μe)) →

R, with μe = J�(ze), of the form

(
δ2hξ

)

ze
(v1, v2) =

k∑

α=1

ιY

(
d
(
ιXdh

α
ξ

))

ze
⊗ eα, (4.5)

for some vector fields X ,Y on P defined on a neighbourhood of ze ∈ P and such
that v1 = Xze , v2 = Yze . The following proposition shows that, since ze is a k-
polysymplectic relative equilibrium point, the above definition does not depend on the
value of the particular chosen vector fields X ,Y out of ze and (δ2hξ )ze is well-defined.

Proposition 4.4 Let ze ∈ P be a k-polysymplectic relative equilibriumpoint of Xh on a
k-polysymplecticmanifold (P,ω). If {x1, . . . , xn} are coordinates on a neighbourhood
of ze ∈ P, then

(δ2hα
ξ )ze(w, v) =

n∑

i, j=1

∂2hα
ξ

∂xi∂x j
(ze)wiv j , ∀w, v ∈ Tze (J

�−1(μe)), α = 1, . . . , k,

where w = ∑n
i=1 wi∂/∂xi and v = ∑n

i=1 vi∂/∂xi .
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Proof From (4.5) for α = 1, . . . , k, we have

(δ2hα
ξ )ze (w, v) = ιY (dιXdh

α
ξ )ze

=
n∑

i, j=1

∂2hα
ξ

∂xi∂x j
(ze)wiv j +

n∑

i, j=1

∂hα
ξ

∂xi
(ze)

∂Xi

∂x j
(ze)v j

=
n∑

i, j=1

∂2hα
ξ

∂xi∂x j
(ze)wiv j ,

where X = ∑n
i=1 Xi∂/∂xi with X(ze) = w, and we have used that ze is a k-

polysymplectic relative equilibrium point and, therefore, hξ has a critical point at
ze, namely (Zhα

ξ )(ze) = 0 for every vector field Z on P and α = 1, . . . , k. ��

Note that the maps (δ2hα
ξ )ze are symmetric for α = 1, . . . , k. Therefore, (δ2hξ )ze

is symmetric. Let us study (4.5) in more detail.

Proposition 4.5 Let (P,ω, h, J�) be a G-invariant ω-Hamiltonian system and let
ze ∈ P be a k-polysymplectic relative equilibrium point of Xh. Then,

(δ2hξ )ze ((ζP )ze , vze ) = 0, ∀ζ ∈ g�
μe

, ∀vze ∈ Tze (J
�−1(μe)),

with μe = J�(ze). Moreover,

(δ2hα
ξ )ze (Yze , ·) = 0, ∀Yze ∈ ker ωα

ze ∩ Tze (J
�−1(μe)), α = 1, . . . , k. (4.6)

Proof First, since h ∈ C∞(P,Rk) is G-invariant and J� is equivariant with respect
to the k-polysymplectic affine Lie group action� : G×(g∗)k → (g∗)k , then for every
g ∈ G and p ∈ P , one has

hξ (�g(p)) = h(�g(p)) − 〈J�(�g(p)), ξ 〉 + 〈μe, ξ 〉

= h(p) − 〈�gJ�(p), ξ 〉 + 〈μe, ξ 〉 = h(p) −
k∑

α=1

〈J�
α (p),�T

gαξ 〉 ⊗ eα + 〈μe, ξ 〉,

where �T
g : gk → gk is the transpose of �g for g ∈ G and �g1, . . . ,�gk are its

components. Let us substitute g = exp(tζ ), with ζ ∈ g, and differentiate with respect
to t . Then,

(
ιζPdhξ

)
ze

= −
k∑

α=1

〈

J�
α (p),

d

dt

∣
∣
∣
∣
t=0

�T
exp (tζ )αξ

〉

⊗ eα

= −
k∑

α=1

〈
J�
α (p), (ζ�α

g )ξ
〉⊗ eα, (4.7)
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where (ζ
�α
g )ξ is the fundamental vector field of �T

α : G × g → g at ξ ∈ g for
α = 1, . . . , k. Taking the second variation of (4.7) relative to p ∈ P , evaluating at
ze ∈ P , and contracting with vze , one has

(
δ2hξ

)

ze
((ζP )ze , vze ) = −

k∑

α=1

〈
TzeJ

�
α

(
vze
)
, (ζ�α

g )ξ
〉⊗ eα.

Therefore, the second variation
(
δ2hξ

)
ze

((ζP )ze , vze ) vanishes since vze ∈ Tze

(J�−1(μe)) ⊂ ker TzeJ
�
α .

Concerning (4.6), it is a consequence of (4.5) and the fact that, for every vector
field Y on J�−1(μe) taking values in ker ωα ∩ T(J�−1(μe)), it follows that

ιY dh
α = ωα(Xh,Y ) = 0, ιY d〈J�

α , ξ 〉 = ωα(ξP ,Y ) = 0,

for α = 1, . . . , k and every ξ ∈ g on J�−1(μe). ��
Proposition 4.5 andProposition 3.2 state that

(
δ2hξ

)
ze
is degenerate in the directions

tangent to Tze

(
G�

μe
ze
)
, while each (δ2hα

ξ )ze is degenerate in the directions of ker ω
α
ze∩

Tze (J
�−1(μe)). On the other hand, since ker(δ2hξ )ze contains ker Tzeπμe , one can

define a bilinear two-form on Tπμe (ze)Pμe , with Pμe = J�−1(μe)/G
�
μe
, by reducing

to that space the bilinear two-form (δ2hξ )ze . By using an adapted coordinate system,
one can prove that the reduction of (δ2hξ )ze to Tπμe (ze)Pμe gives the behaviour of
the Hessian of f μe

on Pμe . It is worth noting that the reduction f μe
to Pμ of hξ

on J�−1(μe) does not depend on ξ , as the value of hξ on points of J�−1(μe) does
not really depend on ξ : it is only the restriction of h to J�−1(μe). Note also that
only directions transverse to the orbit of G�

μe
are significant for determining, via the

variation of hξ , the stability character of f μe
at one of its equilibrium points.

There are many manners to ensure the stability of a k-polysymplectic reduced
Hamiltonian system. This suggests us to give the following definition of formal sta-
bility. For the case of a symplectic manifold, it retrieves the standard condition for the
stability of a reduced symplectic problem (Marsden and Simo 1988).

Definition 4.6 Let (P,ω, h, J�) be a G-invariant ω-Hamiltonian system and let ze ∈
P be a k-polysymplectic relative equilibrium point of Xh. Then, ze is called a formally
stable k-polysymplectic relative equilibrium point if, for a family of supplementary
spaces Sα such that Sα ⊕ (Tze(G

�
μe
ze)+ker ωα

ze ∩Tze (J
�−1(μe))) = Tze (J

�−1(μe))

and S1 + · · · + Sk + Tze (G
�
μe
ze) = Tze (J

�−1(μe)), one has

(
δ2hα

ξ

)

ze
(vze , vze ) > 0, ∀vze ∈ Sα\{0}, α = 1, . . . , k. (4.8)

Note that, given a family of subspaces W1, . . . ,Wk of a vector space E such that
∩k

α=1Wα = 0, one cannot infer that any supplementary spaces Vα ⊕ Wα = E will
satisfy V1 + · · · + Vk = E . This is, essentially, why the condition S1 + · · · + Sk +
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Tze (G
�
μe

) was added. Indeed, to ensure the stability on the reduced manifold, we will

use the fact that the projection of S1 +· · ·+Sk to the tangent space to an equilibrium
point in a reduced manifold spans the total tangent space at that point.

If a system satisfies our formal stability, then
∑k

α=1 f α
μe

has a strict minimum at
πμe (ze) and the function is invariant relative to the evolution of the reduced ωμ-
Hamiltonian system. Hence, that system is stable. The converse is not true, as in the
symplectic case (Abraham andMarsden 1978). We will not study all methods to prove
stability in the reduced k-symplectic Hamiltonian system in this paper, and we will
leave this for further work.

The proof of the above-mentioned fact relies on using a coordinate system on
J�−1(μe) adapted to its fibration onto Pμe and the fact that the obtained results involve
geometric objects that are independent of the coordinate system (see de Lucas and
Zawora 2021; Zawora 2021 for a symplectic analogue). In the adapted coordinate
system, the Hessian of f μe

on the reduced space Pμe at πμe (ze) is retrieved by the
Hessian of hξ on directions of Tze (J

�−1(μe)) that are not tangent to ker Tzeπμe . The
Hessian of the reduced function f μe

can be decomposed into k components. The

vector subspaces S1, . . . ,Sk project onto a series of spaces spanning Tπμe (ze)Pμe .
Condition (4.8) implies that

∂2 f α
μe

∂zi∂z j
(πμe (ze))v

iv j > 0 , ∀v ∈ ImTπμe (ze)πμe (Sα)\{0} ,

∂2 f α
μe

∂zi∂z j
(πμe (ze))v

iv j ≥ 0 , ∀v ∈ Tπμe (ze)Pμe ,

for α = 1, . . . , k. Then,

k∑

α=1

∂2 f α
μe

∂zi∂z j
(πμe (ze))v

iv j > 0, ∀v ∈ Tπμe (ze)Pμe\{0}.

Consequently, the second-order Taylor part of
∑k

α=1 f α
μe

is definite-positive and we
have a strict minimum. The components f α

μe
are constants of motion for X f μe

, and
hence theflowof X f μe

, for an initial condition close enough toπμe (ze) canbe restricted
to an open neighbourhood of πμe (ze).

It is worth noting that we will also call formally stable k-polysymplectic relative
equilibrium points points for which each (4.8) is negative-definite, as similar results
can be obtained. In particular, their projections will be stable equilibrium points. It is
simple to obtain many more stability criteria.

5 Applications and Examples

This section illustrates how the theory and applications of the previous sections can
be applied to relevant examples with physical and mathematical applications.
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5.1 Complex Schwarz Equations

The first example illustrates how locally automorphic Lie systems (Gràcia et al. 2019)
can be seen as ω-Hamiltonian systems relative to a k-polysymplectic structure.

Consider the differential equation the t-dependent complex differential equation
given by

dz

dt
= v,

dv

dt
= a,

da

dt
= 3

2

a2

v
+ 2b(t)v, z, v, a ∈ C, (5.1)

for a certain complex t-dependent function b(t) defined on O = {(z, v, a) ∈ T2
C :

v �= 0}, which can be considered as a system of real differential equations in a natural
manner.

The system (5.1) can be understood as the complex analogue of the Lie system
on OR = {(z, v, a) ∈ T2

R : v �= 0} studied in de Lucas and Vilariño (2015). More
specifically, (5.1) is a first-order representation for the third-order complex differential
equation

d3z

dt3

(
dz

dt

)−1

− 3

2

(
d2z

dt2

)2 (
dz

dt

)−2

= 2b(t).

The left-hand side of the above expression retrieves, for z ∈ R, exactly the real version
of the Schwarzian derivative (also called Schwarz equation) of a function z(t) of t ,
usually represented by {z(t), t}sc, which appears inmany research problems. The ideas
in our work and (5.1) can be used to potentially extend to the complex realm results
for the real third-order Kummer–Schwarz equation and Schwarz derivatives obtained
via Lie systems (see Bozhkov and da Conceição 2020; de Lucas and Sardón 2020 and
references therein). It isworth noting that theSchwarz derivative plays a significant role
in studying linearisation in time-dependent systems, projective systems, mathematical
functions theory, and more (cf. Guieu and Roger 2007; Hille 1997; Lehto 1979).

In real coordinates

v1 = Re(z), v2 = Im(z), v3 = Re(v),

v4 = Im(v), v5 = Re(a), v6 = Im(a),

the system (5.1) is associated with the t-dependent vector field

X = X1 + 2bR(t)X2 + 2bI (t)X3,

where bR(t) = Re(b(t)), bI (t) = Im(b(t)), and

X1 = v3
∂

∂v1
+ v4

∂

∂v2
+ v5

∂

∂v3
+ v6

∂

∂v4
+ 3

2

2v4v5v6 + (v25 − v26)v3

v23 + v24

∂

∂v5

+3

2

2v3v5v6 − v4(v
2
5 − v26)

v23 + v24

∂

∂v6
,
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X2 = v3
∂

∂v5
+ v4

∂

∂v6
, X3 = −v4

∂

∂v5
+ v3

∂

∂v6
,

X4 = −v3
∂

∂v3
− v4

∂

∂v4
− 2v5

∂

∂v5
− 2v6

∂

∂v6
, X5 = v4

∂

∂v3
− v3

∂

∂v4

+2v6
∂

∂v5
− 2v5

∂

∂v6
,

X6 = −v4
∂

∂v1
+ v3

∂

∂v2
− v6

∂

∂v3
+ v5

∂

∂v4
− 3

2

2v3v5v6 − v4(v
2
5 − v26)

(v23 + v24)

∂

∂v5

+3

2

2v4v5v6 + v3(v
2
5 − v26)

(v23 + v24)

∂

∂v6
.

These vector fields satisfy the following commutation relations

[X1, X2] = X4 , [X1, X3] = X5 , [X1, X4] = X1 , [X1, X5] = X6 , [X1, X6] = 0 ,

[X2, X3] = 0 , [X2, X4] = −X2 , [X2, X5] = −X3 , [X2, X6] = −X5 ,

[X3, X4] = −X3 , [X3, X5] = X2 , [X3, X6] = X4 ,

[X4, X5] = 0 , [X4, X6] = −X6 ,

[X5, X6] = X1 ,

Then, X1, . . . , Xk give rise to a Lie algebra of vector fields Vsc that is isomorphic
to C ⊗ sl2 as a real vector space. Indeed, 〈X1, X2, X4〉 � sl(2,R) � 〈X3, X4, X6〉.
Additionally,C⊗sl2 decomposes as 〈X1, X4, X2〉⊕〈X6, X5, X3〉. Then Vsc is graded
as Vsc = E−1 ⊕ E0 ⊕ E1, where E−1 = 〈X6, X1〉, E0 = 〈X4, X5〉, and E1 =
〈X3, X2〉, with [Ei , E j ] = Ei+ j , where the sum is in the additive group {−1, 0, 1}. A
long calculation shows that X1 ∧ · · · ∧ X6 �= 0 almost everywhere. The latter linear
independence and the fact that X1, . . . , X6 span a Lie algebra of vector fields spanning
TO explains why it is said that (5.1) can be related to a locally automorphic Lie system
(cf. Gràcia et al. 2019).

Meanwhile, the Lie algebra of Lie symmetries of the system (5.1) related to the Lie
algebra Vsc reads

2Y1 =
(
v21 − v22

) ∂

∂v1
+ 2v1v2

∂

∂v2
+ 2(v1v3 − v2v4)

∂

∂v3
+ 2(v3v2 + v1v4)

∂

∂v4

+2
(
v23 + v1v5 − v24 − v2v6

) ∂

∂v5
+ 2(v5v2 + 2v3v4 + v2v6)

∂

∂v6
,

Y2 = ∂

∂v1
, Y3 = ∂

∂v2
,

Y4 = −v1
∂

∂v1
− v2

∂

∂v2
− v3

∂

∂v3
− v4

∂

∂v4
− v5

∂

∂v5
− v6

∂

∂v6
,

Y5 = v2
∂

∂v1
− v1

∂

∂v2
+ v4

∂

∂v3
− v3

∂

∂v4
+ v6

∂

∂v5
− v5

∂

∂v6
.

2Y6 = −2v1v2
∂

∂v1
+
(
v21 − v22

) ∂

∂v2
− 2(v2v3 + v1v4)

∂

∂v3
+ 2(v1v3 − v2v4)

∂

∂v4

−2(2v3v4 + v2v5 + v1v6)
∂

∂v5
+ 2

(
v23 − v24 + v1v5 − v2v6

) ∂

∂v6
.
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In other words, [Xi ,Y j ] = 0 for every i, j = 1, . . . , 6. The commutation relations for
the vector fields Y1, . . . ,Y6 are

[Y1, Y2] = Y4 , [Y1, Y3] = Y5 , [Y1, Y4] = Y1 , [Y1, Y5] = Y6 , [Y1, Y6] = 0 ,

[Y2, Y3] = 0 , [Y2, Y4] = −Y2 , [Y2, Y5] = −Y3 , [Y2, Y6] = −Y5 ,

[Y3, Y4] = −Y3 , [Y3, Y5] = Y2 , [Y3, Y6] = Y4 ,

[Y4, Y5] = 0 , [Y4, Y6] = −Y6 ,

[Y5, Y6] = Y1 .

Note that Y1, . . . ,Y6 admit identical structure constants as X1, . . . , X6. One can
choose one-forms η1, . . . , η6 to be the dual to Y1, . . . ,Y6. The existence of these dual
forms is ensured by the condition Y1 ∧ · · · ∧ Y6 �= 0 and the fact that Y1, . . . ,Y6 span
TO. These dual one-forms remain invariant relative to the Lie derivatives with respect
to the vector fields X1 . . . , X6, i.e. LXi η

j = 0 for i, j = 1, . . . , 6.
Moreover, the differential forms dη1, . . . , dη6, or their linear combinations, are

closed differential forms that are invariant relative to the Lie derivatives along
X1, . . . , X6. These properties make them Hamiltonian vector fields relative to the
presymplectic forms dη1, . . . , dη6.

The appropriate linear combinations of these forms yield a set of presymplectic
forms with the zero intersection of their kernels, resulting in X1, . . . , X6 being ω-
Hamiltonian vector fields.

In particular,

dη1 = −η5 ∧ η6 − η1 ∧ η4 , dη2 = −η3 ∧ η5 − η4 ∧ η2 ,

dη3 = −η4 ∧ η3 − η5 ∧ η2 , dη4 = −η1 ∧ η2 − η3 ∧ η6 ,

dη5 = −η1 ∧ η3 − η6 ∧ η2 , dη6 = −η1 ∧ η5 − η6 ∧ η4 .

Every vector field in 〈X1, . . . , X6〉 becomes an ω-Hamiltonian vector field relative
to the two-polysymplectic form dη1 ⊗ e1 + dη2 ⊗ e2. The same applies to dη5 ⊗
e1 + dη6 ⊗ e2, and many other two-polysymplectic forms. This also extends to three-
polysymplectic forms such as dη1 ⊗ e1 + dη2 ⊗ e2 + dη3 ⊗ e3, provided that the
kernels of their presymplectic components have zero intersection.

Let us focus on the three-polysymplectic form defined by

ω = ω1 ⊗ e1 + ω2 ⊗ e2 + ω3 ⊗ e3 = dη1 ⊗ e1 + dη2 ⊗ e2 + dη4 ⊗ e3.

A two-polysymplectic Marsden–Weinstein reduction can be performed by taking,
for instance, the ω-Hamiltonian vector field X1 and the Lie symmetry X6, which
satisfies that [X1, X6] = 0. Then, a two-polysymplectic momentum map J� : O →
(R∗)3 is given by

ιX6dJ
� = ιX6ω

1 ⊗ e1 + ιX6ω
2 ⊗ e2 + ιX6ω

3 ⊗ e3 = dJ1 ⊗ e1 + dJ2 ⊗ e2 + dJ3 ⊗ e3.

It is a matter of a long calculation to prove that dJ1 ∧ dJ2 ∧ dJ3 �= 0 based on the
fact that ∂(J1, J2, J2)/∂(v1, v2, v3) �= 0 almost everywhere. Therefore, J�−1(μ) has
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dimension three. Moreover, due to ιX6dJ
� = 0, the reduced manifold J�−1(μ)/X6

is two-dimensional.
Note that the vector field X1 is tangent to the level set J�−1(μ) since

ιX1 ιX6dη
α = X1 Jα = 0, α = 1, 2, 3.

Therefore, by Theorem3.4 the vector field X1 reduces onto themanifold J�−1(μ)/X6.
Then, after some calculations, we obtain that condition (3.1) is fulfilled. To verify

condition (3.2), which has the form

Tp(G
�
μ p) =

k⋂

α=1

(
ker ωα

p + Tp(G
�α

μα p)
)

∩ Tp(J�−1(μ)),

one can note that

Tp(Gμ p) = 〈X6〉 ⊂ Tp(J�−1(μ)) ⊂ Tp P.

Moreover, we have

ker ω1 = 〈Y2,Y3〉, ker ω2 = 〈Y1,Y6〉, ker ω3 = 〈Y4,Y5〉.

In turn, this amounts to obtaining three determinants, each being nonzero, implying
that no element of ker ω1, ker ω2, ker ω3 belongs to TpJ�−1(μ). In particular, at a
generic point,

det

(
Y2 J2 Y2 J3
Y3 J2 Y3 J3

)

�= 0, det

(
Y1 J1 Y1 J3
Y6 J1 Y6 J3

)

�= 0, det

(
Y4 J1 Y4 J2
Y5 J1 Y5 J2

)

�= 0.

Finally, the condition (3.2) is satisfied, namely

(〈Y2,Y3〉 + 〈X6〉
) ∩ (〈Y1,Y6〉 + 〈X6〉

) ∩ (〈Y4,Y5〉 + 〈X6〉
) ∩ Tp(J�−1(μ)) = 〈X6〉.

Hence, Theorem 3.3 can be applied.

5.2 The k-Polysymplectic Manifold Given by the Product of k Symplectic Manifolds

This section presents an illustrative example of the k-polysymplectic Marsden–
Weinstein reduction of a product of k symplectic manifolds (see Sect. 3.3). This
example shows different types of systems of differential equations that can be under-
stood as Hamiltonian systems relative to a k-polysymplectic manifold and describes
their reductions. In particular, the so-called diagonal prolongations of Lie–Hamilton
systems, which appear also in the multidimensional generalisations of some integral
systems, like in the case of the Winternitz–Smorodinsky oscillator on T∗

R (see de
Lucas and Sardón 2020), can be considered as Hamiltonian systems relative to a
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k-polysymplectic manifold. One can also consider higher-dimensional Winternitz–
Smorodinsky oscillators.

Let us provide some new details to the formalism in Sect. 3.3. Define P = P1 ×
· · · × Pk for some k symplectic manifolds (Pα, ωα), where α = 1, . . . , k. This gives
rise to a k-polysymplectic manifold (P, pr∗αωα ⊗ eα). Assume that each Lie group
action �α : Gα × Pα → Pα admits a symplectic momentum map J�α : Pα → g∗

α for
α = 1, . . . , k. Define the Lie group action of G = G1 × . . . × Gk on P as (3.6). If
one defines g = ⊕k

α=1 gα , then there exists a k-polysymplectic momentum map

J : (x1, . . . , xk) ∈ P �−→ (0, . . . , Jα, . . . , 0) ⊗ eα =

⎛

⎜
⎜
⎜
⎝

J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...

0 0 · · · Jk

⎞

⎟
⎟
⎟
⎠

∈ g∗k,

where there is a summation over α and we assume Jα(x1, . . . , xk) = J�α
(xα) for

α = 1, . . . , k and the matrix array is a practical representation of the image of J. Note
that μ = (0, . . . , μα, . . . , 0) ⊗ eα ∈ g∗k is a weak regular value of J if and only if
each μα ∈ g∗

α is a weak regular point of its corresponding J�α
. Assume that some G�

μ

acts in a quotientable manner on the associated level J−1(μ). This happens if and only
if every G�α

μα acts on a quotientable manner on each J�α−1(μα) for α = 1, . . . , k.
We already showed that the conditions (3.1) and (3.2) are satisfied. By Theorem

3.3, these equations guarantee that, on the reduced manifold J−1(μ)/G�
μ , there exists

a uniquely induced k-polysymplectic manifold,

(

J−1(μ)/G�
μ � J�1−1(μ1)/G�1

1μ × · · · × J�k−1(μk)/G�k

kμ ωμ =
k∑

α=1

ωμα ⊗ eα

)

for some reduced presymplectic forms ωμ1 , . . . , ωμk .
Next, let us consider a vector field X on P that is ω-Hamiltonian and G-invariant.

By Theorem 3.4, the vector field X can be written in the following way

X =
k∑

α=1

Xα,

where each Xα can be considered as a vector field on Pα that is tangent to J�α−1(μα)

for α = 1, . . . , k. Recall that ιXαωβ = δ
β
αdhα for α, β = 1, . . . , k. Moreover, this

frequently happens in diagonal prolongations of Lie–Hamilton systems, where we
have a vector field X [m] defined on a manifold of the form Nm that can be considered
as a copy of a Hamiltonian system on each N relative to a symplectic manifold on that
N (cf. de Lucas and Sardón 2020). Then,

dh =
k∑

α=1

dhα ⊗ eα =
k∑

α=1

ιXωα ⊗ eα.
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Next, hξ = h−〈J−μe, ξ 〉 for ξ ∈ g, andTheorem4.2yields that ze = (z1e, . . . , zke) ∈
P is a k-polysymplectic relative equilibriumpoint if and only if each zαe is a symplectic
relative equilibrium point of a Hamiltonian vector field Xα on the symplectic manifold
(Pα, ωα) relative to some ξα ∈ gα . Then, a k-polysymplectic relative equilibrium
point ze is formally stable if there exists a series of supplementary spaces Sα to
Tze (G

�
μe
ze) ⊕ (ker ωα

ze ∩ Tze (J
−1(μe))) in TzeJ

−1(μe), with α = 1, . . . , k, such that

(
δ2hα

ξ

)

ze
(vze , vze ) > 0, ∀vze ∈ Sα \ {0}, α = 1, . . . , k

and S1 + . . . + Sk + Tze (G
�
μe
ze) = Tze (J

−1(μe)).

5.2.1 Product of Oscillators

Let us detail a practical application of the formalism above. Consider the product of
k isotropic three-dimensional oscillators given by the equations

d2xiα
dt2

= −b2αx
i
α, α = 1, . . . , k, i = 1, 2, 3,

where the bα > 0, with α = 1, . . . , k, are a series of constants. The above system of
second-order differential equations can bewritten as a first-order system of differential
equations

{
dxiα
dt = piα,
dpiα
dt = −b2αx

i
α,

α = 1, . . . , k, i = 1, 2, 3, (5.2)

on the product manifold P = (T∗
R
3)k . The α-th factor T∗

R
3 in P is a symplectic

manifold equipped with the symplectic form

ωα =
3∑

i=1

dxiα ∧ dpiα,

where we stress that there is no sum over the index α. Then, P is a k-polysymplectic
manifold when endowed with the R

k-valued form ω = ∑k
α=1 ωα ⊗ eα , where

ω1, . . . , ωk are considered as pulled back to P in the natural way. Moreover, (5.2)
describes the integral curves of the vector field

Xh =
k∑

α=1

3∑

i=1

(

piα
∂

∂xiα
− b2αx

i
α

∂

∂ piα

)

,
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which is ω-Hamiltonian admitting an ω-Hamiltonian function

h = 1

2

k∑

α=1

(
p2α + b2αx

2
α

)
⊗ eα, p2α =

3∑

i=1

(piα)2, x2α =
3∑

i=1

(xiα)2.

Let us consider a Lie group action �α : SO(3) × (T∗
R
3)α → (T∗

R
3)α , where each

�α is the lift of the natural Lie group action � : SO(3) × R
3 → R

3 induced by
rotations on R

3 to the α-th copy of T∗
R
3 in P . Then, the resulting Lie group action

� on (T∗
R
3)k given by (3.6) reads

� : SO(3)k × (T∗
R
3)k −→ (T∗

R
3)k .

The Lie algebra of fundamental vector fields of � is spanned by the basis of vector
fields on P of the form

ξ1αP =
(

x1α
∂

∂x2α
− x2α

∂

∂x1α
+ p1α

∂

∂ p2α
− p2α

∂

∂ p1α

)

,

ξ2αP =
(

x2α
∂

∂x3α
− x3α

∂

∂x2α
+ p2α

∂

∂ p3α
− p3α

∂

∂ p2α

)

,

ξ3αP =
(

x3α
∂

∂x1α
− x1α

∂

∂x3α
+ p3α

∂

∂ p1α
− p1α

∂

∂ p3α

)

,

with α = 1, . . . , k. These vector fields are Lie symmetries of ω and h. Moreover,
a k-polysymplectic momentum map associated with � is given by J : (T∗

R
3)k →

[(sok3)∗]k such that

J(q1, . . . , qk) = (0, 0, 0; . . . ; J 1α , J 2α , J 3α ; . . . ; 0, 0, 0) ⊗ eα

where qα = (x1α, x2α, x3α, p1α, p2α, p3α) ∈ T∗
R
3 for α = 1, . . . , k, while

(J 1α , J 2α , J 3α ) = (x1α p
2
α − x2α p

1
α, x2α p

3
α − x3α p

2
α, x3α p

1
α − x1α p

3
α),

and α = 1, . . . , k. Note that the elements of so∗
3 are represented by the coordinates

given in an appropriate basis. The function x1α p
2
α − x2α p

1
α is the angular momentum,

pαϕ , of theα-th particle in the corresponding spherical coordinates {rα, θα, ϕα}.Mean-
while, L2

α = (J 1α )2 + (J 2α )2 + (J 3α )2 is the square of the total angular momentum of
the α-th particle. Both quantities are conserved by the evolution of Xh.

The momentummap J is (Ad∗)k-equivariant. Recall that J = (0, . . . , Jα, . . . , 0)⊗
eα . Then, μ = (0, 0, 0; . . . ; J 1α , J 2α , J 3α ; . . . ; 0, 0, 0) ⊗ eα is weakly regular value of
J if and only if each triple μα = (J 1α , J 2α , J 3α ) ∈ so∗

3 is a weakly regular value of J
�α

,
where α = 1, . . . , k. Let us fix some weakly regular μ. Then,

Tq(J−1(μ)) =
k⊕

α=1

Tqα
(J�α−1

α (μα)), ∀q = (q1, . . . ,qk) ∈ P.
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Moreover,

ξ iαP J
j

β = −δαβεi jk J
k
β , i, j = 1, 2, 3, α, β = 1, . . . , k.

The isotropy subgroup of � at μ is given by the Cartesian product of all the
isotropy subgroups corresponding to each μα relative to �α and α = 1, . . . , k. To
obtain Gμα , one may verify when

∑3
i=1 λi (ξ

i
αP ) belongs to Tqα

(J�α−1(μα)), namely
∑3

i=1 λi (ξ
i
P )α J

j
α = 0 for j = 1, 2, 3 (with no summation over α), which occurs if

and only if

⎛

⎝
0 −J 3α J 2α
J 3α 0 −J 1α

−J 2α J 1α 0

⎞

⎠

⎛

⎝
λ1
λ2
λ3

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ .

The matrix of coefficients has rank two for L2
α �= 0. Moreover, J�α

has a reg-
ular value at μα when L2

α �= 0 for every α = 1, . . . , k. Let us restrict to that
case. Each isotropy subgroup Gμα has always dimension one. Hence, the reduced
manifold J�−1(μ)/Gμ has dimension 6k − 3k − k = 2k. The conditions for the
k-polysymplectic Marsden–Weinstein reduction results, as already commented, from
the ones for the symplectic reduction on each component, which are satisfied. Hence,
the k-polysymplectic Marsden–Weinstein reduction exists.

Note that h = 1
2

∑k
α=1(p

2
αr + p2αϕ/(r2α sin

2 θα) + p2αθ/r
2
α + b2αr

2
α) ⊗ eα and ωα =

drα ∧dpαr +dθα ∧dpαθ +dϕα ∧dpαϕ , for each α = 1, . . . , k, in spherical coordinates
for the k component manifolds of (T∗

R
3)k . Then, the differential equations for the

integral curves of Xh read

dpαr

dt
= p2αϕ

r3α sin
2 θα

+ p2αθ

r3α
− b2αrα,

dpαϕ

dt
= 0,

dpαθ

dt
= p2αϕ cos θα

r2α sin
3 θα

,

drα
dt

= pαr ,
dθα

dt
= pαθ

r2α
,

dϕα

dt
= pαϕ

r2α sin
2 θα

.

k-Polysymplectic relative equilibrium points are given by those points for which the
vector field Xh on (T∗

R
3)k corresponding to the dynamics is proportional to one

of the fundamental vector fields of �. In particular, let us take ze ∈ P such that
ze = (rα, θα = π

2 , ϕα, pαr = 0, pαθ = 0, pαϕ) and Lα = bαr2α = pαϕ for every
α = 1, . . . , k on analysed points. Then, the ω-Hamiltonian vector field Xh at such
points is

Xh =
k∑

α=1

pαϕ

r2α

∂

∂ϕα

.

This implies that ze ∈ P is a k-polysymplectic relative equilibrium point of Xh. Let
us demonstrate this by applying Theorem 4.2. This theorem ensures that ze is a k-
polysymplectic relative equilibrium point of Xh if and only if there exists ξ ∈ sok3
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such that hξ = h − 〈J� − μe, ξ 〉 has a critical point at ze. Indeed, for

ξ = (p1ϕ/r21 , 0, 0; . . . ; pkϕ/r2k , 0, 0) ∈ sok3,

the Rk-valued function

hξ = h − 〈J� − μe, ξ 〉 =
k∑

α=1

(hα − 〈(0, . . . , J�α − (Lα, 0, 0), . . . , 0), ξ 〉) ⊗ eα,

has a critical point at ze. Therefore, ze is a k-polysymplectic relative equilibrium point.
By Theorem 3.3, the reduced manifolds is (T∗

R)k with coordinates {rα, pαr } for
α = 1, . . . , k. The reduced k-polysymplectic form on the reduced manifold is given
by

ωμ =
k∑

α=1

drα ∧ dpαr ⊗ eα,

and the reduced ωμ-Hamiltonian reads

f μ = 1

2

k∑

α=1

(

p2αr + L2
α

r2α
+ b2αr

2
α

)

⊗ eα.

Furthermore, one has that

dpαr

dt
= −b2αrα + L2

α

r3α
,

drα
dt

= pαr , α = 1, . . . , k.

Thus, the equilibrium points of X f μ
have pαr = 0 and

−b2αrα + L2
α

r3α
= 0

for α = 1, . . . , k. Note that this point is the projection of a k-polysymplectic relative
equilibrium point ze ∈ P .

TheHessian of the functions f α
μ is positive-definite in a supplementary to the kernel

of ωμα at the equilibrium point. Indeed,

Hess( f α
μ ) =

(
1 0
0 4b2α

)

.

Moreover, the function
∑k

α=1 f α
μ has a positive-definite Hessian and the equilibrium

point becomes a strictminimum.Thismeans that the reduced k-polysymplectic relative
equilibriumpoint is stable. In the originalmanifold, the orbits around k-polysymplectic
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relative equilibrium points remain in the anti-image in J�−1(μ) of an open neighbour-
hood of the projection of the k-polysymplectic relative equilibrium points.

5.3 k-Polysymplectic Affine Lie Systems

Let us apply our techniques to a family of affine inhomogeneous systems of first-order
differential equations. It is worth noting that all such systems are Lie systems (Car-
iñena and de Lucas 2011). We will hereafter call such differential equations affine Lie
systems. Many such systems appear in control theory and other relevant disciplines
(Cariñena and Ramos 2003). In particular, we are here concerned with affine Lie sys-
tems admitting aLie algebra ofHamiltonian vector fields relative to a k-polysymplectic
form. We call them k-polysymplectic affine Lie systems.

Although our techniques could be extended to other affineLie systems, let us restrict
ourselves to the particular case

d

dt

⎛

⎜
⎜
⎜
⎜
⎝

x1
x2
x3
x4
x5

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

b1(t)
b2(t)
b3(t)
b4(t)
b5(t)

⎞

⎟
⎟
⎟
⎟
⎠

+ b6(t)

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 −1 0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

x1
x2
x3
x4
x5

⎞

⎟
⎟
⎟
⎟
⎠

, (5.3)

where b1(t), . . . , b6(t) are arbitrary t-dependent functions. The above system is the
systemof differential equations describing the integral curves of the t-dependent vector
field

X =
6∑

α=1

bα(t)Xα,

where

X1 = ∂

∂x1
, X2 = ∂

∂x2
, X3 = ∂

∂x3
, X4 = ∂

∂x4
, X5 = ∂

∂x5
,

X6 = x5
∂

∂x3
− x3

∂

∂x5
.

These vector fields span a six-dimensional Lie algebra of vector fields V , with the
following non-vanishing commutation relations

[X3, X6] = −X5, [X5, X6] = X3.

Consider the case where b1(t), . . . , b6(t) are constants, denoted as c1, . . . , c6 ∈ R,
respectively. Since the vector fields X1 ∧ · · · ∧ X6 = 0, the methods presented in
Sect. 5.1 for describing k-polysymplectic forms compatible with Lie systems do not
apply to (5.3). Nevertheless, there exists a two-polysymplectic form on R5 given by

ω = (dx3 ∧ dx5 + dx4 ∧ dx1) ⊗ e1 + (dx3 ∧ dx5 + dx4 ∧ dx2) ⊗ e2
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turning all the vector fields of V into ω-Hamiltonian vector fields. Indeed, ω-
Hamiltonian functions for X1, . . . , X6 have the form

h1 = −x4 ⊗ e1 , h2 = −x4 ⊗ e2 , h3 = x5 ⊗ e1 + x5 ⊗ e2 ,

h4 = x1 ⊗ e1 + x2 ⊗ e2 , h5 = −x3 ⊗ e1 − x3 ⊗ e2 , h6 = 1

2
(x23 + x25 ) ⊗ e1 + 1

2
(x23 + x25 ) ⊗ e2 .

The flow of the vector field X4 gives rise to a two-polysymplectic Lie group action
� : R×R

5 → R
5. Moreover, X4, which spans the space of fundamental vector fields

of �, is a Lie symmetry of system (5.3). Then, a two-polysymplectic momentum map
associated with � reads

J� : (x1, x2, x3, x4, x5) ∈ R
5 �→ (x1, x2) = μ ∈ R

∗2.

Note that μ ∈ R
∗2 is a regular value of J�, and J� is Ad∗2-equivariant two-

polysymplectic momentum map. It can be proved that the example satisfies the
conditions (3.1) and (3.2). Hence, Theorem 3.3 can be applied. The vector field X4 is
tangent to J�−1(μ) and Tx (Gμx) = 〈 ∂

∂x4
〉 for x ∈ R

5. Therefore, Pμ = J�−1(μ)/R

is a two-dimensional manifold and the variables {x3, x5} can be considered in a natural
manner as variables on Pμ. The reduced two-polysymplectic form reads

ωμ = ω1
μ ⊗ e1 + ω2

μ ⊗ e2 = dx3 ∧ dx5 ⊗ e1 + dx3 ∧ dx5 ⊗ e2.

To apply Theorem 3.4, the affine Lie system must be tangent to J�−1(μ), which can
be ensured by assuming that its associated ω-Hamiltonian function has to be invariant
relative to X4. These conditions are satisfied by imposing c1 = c2 = 0. The resulting
vector field, Xω = c3X3 + c4X4 + c5X5 + c6X6, projects onto Pμ = J�−1(μ)/R

giving rise to an ωμ-Hamiltonian vector field of the form

Xμ = c6

(

x5
∂

∂x3
− x3

∂

∂x5

)

+ c3
∂

∂x3
+ c5

∂

∂x5
.

The ωμ-Hamiltonian function of Xμ reads

f μ =
(

c3x5 − c5x3 + c6

(
x23
2

+ x25
2

))

⊗ e1

+
(

c3x5 − c5x3 + c6

(
x23
2

+ x25
2

))

⊗ e2.

Next, the methods introduced in Sect. 4 will be employed to find the two-
polysymplectic relative equilibrium points of the ω-Hamiltonian vector field

Y = X4 + X6
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and study their stability. According to Theorem 4.2, a two-polysymplectic relative
equilibrium point ze ∈ P is a point for which there exists ξ ∈ g � R such that ze is a
critical point of each component of the R2-valued function

hξ =
(

x1 − ξ(x1 − μ1) + 1

2
(x23 + x25 )

)

⊗ e1

+
(

x2 − ξ(x2 − μ2) + 1

2
(x23 + x25 )

)

⊗ e1.

This happens for ξ = 1 and ze = (x1, x2, x3 = 0, x4, x5 = 0) ∈ R
5, where x1, x2, x4

are arbitrary.
To examine the relative stability of ze ∈ R

5, note that the supplementary spaces to
Tze (Gμe ze) + ker ω1

ze and Tze (Gμe ze) + ker ω2
ze in Tze (J

�−1(μe)) have the form

S1 =
〈

∂

∂x3
,

∂

∂x5

〉

, S2 =
〈

∂

∂x3
,

∂

∂x5

〉

,

respectively. Then, S1 + S2 + Tze (Gμe ze) = Tze (J
�−1(μe)) and the Hessian of

(δ2 h1ξ )ze at ze in the subspace S1 and the Hessian of (δ2h2ξ )ze in the subspace S2 are
definite-positive. Therefore, by our criterion, a two-polysymplectic relative equilib-
rium point ze ∈ R

5 is relatively stable, namely its projection to Pμe is stable. More
specifically, the reduced system has an ωμe -Hamiltonian function whose components,
f 1μe

, f 2μe
are such that their Hessians at equilibrium pointsπμe (ze) = (x3 = 0, x5 = 0)

are definite-positive in the directions of ker(ω1
μe

)ze and ker(ω2
μe

)ze , respectively.
Indeed, the reduced ωμe -Hamiltonian function reads

f μe
= 1

2

(
x23 + x25

)
⊗ e1 + 1

2

(
x23 + x25

)
⊗ e2

and the function

f 1μe
+ f 2μe

= x23 + x25 ,

is invariant under the dynamics of Yμe and has a strict minimum at πμe (ze) = (x3 =
0, x5 = 0). Hence, the reduced two-polysymplectic Hamiltonian system is stable.

5.4 QuantumQuadratic Hamiltonian Operators

Next, let us analyse an example based upon the Wei–Norman equations for the auto-
morphic Lie system related to quantum mechanical systems described by quadratic
Hamiltonian operators, which describe as particular cases quantum harmonic oscilla-
tors with/without dissipation (Cariñena and de Lucas 2011; Wei and Norman 1963).
In this case, the system of differential equations under study is the one determining
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the integral curves of the time-dependent vector field

X =
6∑

α=1

bα(t)X R
α , (5.4)

for certain t-dependent functions b1(t), . . . , b6(t) and the vector fields

X R
1 = ∂

∂v1
+ v5

∂

∂v4
− 1

2
v25

∂

∂v6
, X R

2 = v1
∂

∂v1
+ ∂

∂v2
+ 1

2
v4

∂

∂v4
− 1

2
v5

∂

∂v5
,

X R
3 = v21

∂

∂v1
+ 2v1

∂

∂v2
+ ev2

∂

∂v3
− v4

∂

∂v5
+ 1

2
v24

∂

∂v6
, X R

4 = ∂

∂v4
,

X R
5 = ∂

∂v5
− v4

∂

∂v6
, X R

6 = ∂

∂v6
.

The commutation relations between the above vector fields read

[
X R
1 , X R

2

]
= X R

1 ,

[
X R
1 , X R

3

]
= 2 X R

2 ,
[
X R
2 , X R

3

]
= X R

3 ,

[
X R
1 , X R

4

]
= 0,

[
X R
2 , X R

4

]
= − 1

2
X R
4 ,

[
X R
3 , X R

4

]
= X R

5 ,

[
X R
1 , X R

5

]
= −X R

4 ,
[
X R
2 , X R

5

]
= 1

2
X R
5 ,

[
X R
3 , X R

5

]
= 0,

[
X R
4 , X R

5

]
= −X R

6 ,

[
X R
1 , X R

6

]
= 0,

[
X R
2 , X R

6

]
= 0,

[
X R
3 , X R

6

]
= 0,

[
X R
4 , X R

6

]
= 0,

[
X R
5 , X R

6

]
= 0.

It is known that the Lie algebra of Lie symmetries of 〈X R
1 , . . . , X R

6 〉 is spanned by

XL
1 = ev2

∂

∂v1
+ 2v3

∂

∂v2
+ v23

∂

∂v3
, XL

2 = ∂

∂v2
+ v3

∂

∂v3
, XL

3 = ∂

∂v3
,

XL
4 = e−v2/2(ev2 − v1v3)

∂

∂v4
− e−v2/2v3

∂

∂v5
− e−v2/2(ev2 − v1v3)v5

∂

∂v6
,

XL
5 = v1e

−v2/2 ∂

∂v4
+ e−v2/2 ∂

∂v5
− v1v5e

−v2/2 ∂

∂v6
, XL

6 = ∂

∂v6
.

In particular, let us focus on systems (5.4) with constant coefficients and, in particular,

X R
5 = ∂

∂v5
− v4

∂

∂v6
.

Then, a Lie symmetry of our system is given by

Y = ∂

∂v5
.
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A two-polysymplectic form on R6 can be defined in the following way

ω = ω1 ⊗ e1 + ω2 ⊗ e2
= (dv1 ∧ dv3 + dv2 ∧ dv4 + dv5 ∧ dv1

+dv4 ∧ dv6) ⊗ e1 + (dv4 ∧ dv6 − dv3 ∧ dv5) ⊗ e2 .

Note that

ker ω1 =
〈

∂

∂v3
+ ∂

∂v5
,

∂

∂v2
+ ∂

∂v6

〉

, ker ω2 =
〈

∂

∂v1
,

∂

∂v2

〉

,

and ker ω1 ∩ ker ω2 = 0 and (R6,ω) becomes a two-polysymplectic manifold. The
vector field Y is a Lie symmetry of the two-polysymplectic form, i.e.LYω = 0. Then,

ιY3ω
1 = dv1, ιY3ω

2 = dv3,

and a two-polysymplectic momentum map J� associated with the Lie group action
given by the flow of Y reads

J� : x ∈ R
6 �−→ (v1, v3) = (g∗)2 ∈ μ � R

∗2.

Note that every μ = (μ1, μ2) ∈ R
∗2 is a weakly regular value of J�, which is Ad∗2-

equivariant. The isotropy group for every μ ∈ R
∗2 reads Gμ = R. Hence, J�−1(μ) is

a submanifold, as well as J�−1
1 (μ1) and J�−1

2 (μ2). Since Y5 is tangent to J�−1(μ),
then Pμ = J�−1(μ)/Gμ can be locally coordinated by the functions {v2, v4, v6}.

The vector field X R
5 is ω-Hamiltonian with

ιX R
5
ω = ιX R

5
ω1 ⊗ e1 + ιX R

5
ω2 ⊗ e2

= d

(

v1 + v24

2

)

⊗ e1 + d

(

v3 + v24

2

)

⊗ e2 = dhR
5 . (5.5)

Then, the reduced two-forms read

ω1
μ = dv2 ∧ dv4 + dv4 ∧ dv6, ω2

μ = dv4 ∧ dv6.

Furthermore, one has

ker ω1
μ =

〈
∂

∂v2
+ ∂

∂v6

〉

, ker ω2
μ =

〈
∂

∂v2

〉

,

and ω1
μ, ω2

μ define a two-polysymplectic form on Pμ. Moreover, the ω-Hamiltonian
function of X R

5 is invariant relative to Y . Then, Theorem 3.4 ensures that the projection
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of X R
5 onto Pμ exists and is given by

X R = −v4
∂

∂v6
,

which is the ωμ-Hamiltonian vector field of the ωμ-Hamiltonian function

f μ =
(

μ1 + v24

2

)

⊗ e1 +
(

μ2 + v24

2

)

⊗ e2,

which has a critical point at every point (v4 = 0, v6), where v6 is arbitrary. Such
points are not stable equilibrium points. In particular, this ωμ-Hamiltonian function
does not satisfy that f 1μ + f 2μ has a strict minimum at the equilibrium point: it has only
a minimum. Note that the points in J�−1(μ) that project onto the above-mentioned
equilibrium points are two-polysymplectic relative equilibrium points. The analysis
of (5.5) with our two-polysymplectic energy–momentum methods at the mentioned
two-polysymplectic relative equilibrium points suggests the same results.

5.5 Equilibrium Points andVector Fields with Polynomial Coefficients

Let us illustrate certain aspects of our k-polysymplectic energy–momentum method
by studying vector fields with a polynomial behaviour. Moreover, our example will
illustrate some features ofweakly regular points of k-polysymplecticmomentummaps
and the character of their associated k-polysymplecticMarsden–Weinstein reductions.

Consider coordinates {x1, x2, x3, x4, x5, x6, x7, x8} onR8 and the vector field X on
R
8 given by

X = xa6
∂

∂x2
+ xb4

∂

∂x3
− xc3

∂

∂x4
+ xd8

∂

∂x7
− xe7

∂

∂x8
,

where a, b, c, d, e ∈ N. Define the two-polysymplectic for ω on R
8 of the form

ω = ω1 ⊗ e1 + ω2 ⊗ e2 = (dx3 ∧ dx4 + dx1 ∧ dx5) ⊗ e1
+(dx2 ∧ dx6 + dx7 ∧ dx8) ⊗ e2.

Then,

ker ω1
x =

〈
∂

∂x2
,

∂

∂x6
,

∂

∂x7
,

∂

∂x8

〉

, ker ω2
x =

〈
∂

∂x1
,

∂

∂x3
,

∂

∂x4
,

∂

∂x5

〉

,

ker ω1
x ∩ ker ω2

x = 0

for any x ∈ R
8, and thus ω becomes a two-polysymplectic form.

The vector field X admits the Lie symmetries, Y1 = ∂
∂x2

, Y2 = ∂
∂x1

, Y3 =
∂

∂x5
, which span a three-dimensional abelian Lie algebra of vector fields. These Lie
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symmetries are the infinitesimal generators of the translations along the x2, x1, and x5
coordinates, and they also leave the two-polysymplectic form invariant, i.e.LYi ω

α = 0
for i = 1, 2, 3 and α = 1, 2. They give rise to a Lie group action � : R3 ×R

8 → R
8

that leaves invariant ω.
Since

ιY1ω
1 = 0 , ιY2ω

1 = dx5 , ιY3ω
1 = −dx1 ,

ιY1ω
2 = dx6 , ιY2ω

2 = 0 , ιY3ω
2 = 0 ,

a two-polysymplectic momentum map J� can be defined by setting

J� : x ∈ R
8 �−→ J�(x) = (0, x5,−x1; x6, 0, 0) ∈ (R3∗)2 � (R3)2.

Then, TxJ�−1(μ) =
〈

∂
∂x2

, ∂
∂x3

, ∂
∂x4

, ∂
∂x7

, ∂
∂x8

〉
for each x ∈ J�−1(μ) and μ ∈ (R3)2.

The two-polysymplectic momentummap J� is Ad∗2-equivariant and everyμ ∈ (R3)2

is a weakly regular value of J� since each J�−1(μ) is a five-dimensional submanifold
of R8 and its tangent space at each point coincides with the kernel of J� at that point.
Moreover, J� has no regular points.

Note thatY2 andY3 do not take values at x in Tx (Gμx) butY1 does. The assumptions
of Theorem 3.3 are satisfied, and the quotient space TxJ�−1(μ)/Tx

(
Gμx

)
is a two-

dimensional subspace, where

TxJ�−1(μ)/Tx
(
Gμx

) =
〈

∂

∂x3
,

∂

∂x4
,

∂

∂x7
,

∂

∂x8

〉

, ∀x ∈ J�−1(μ)

and

ωμ = ω1
μ ⊗ e1 + ω2

μ ⊗ e2 = (dx3 ∧ dx4) ⊗ e1 + (dx7 ∧ dx8) ⊗ e2.

The vector field X is ω-Hamiltonian relative to

dh = ιXω = ιXω1 ⊗ e1 + ιXω2 ⊗ e2

= d

(
1

1 + b
xb+1
4 + 1

c + 1
xc+1
3

)

⊗ e1

+ d

(
1

1 + a
xa+1
6 + 1

d + 1
xd+1
8 + 1

1 + e
xe+1
7

)

⊗ e2 .

Moreover, h is invariant relative to the Lie symmetries Y1,Y2,Y3. By Theorem 3.4,
the vector field X projects onto the quotient manifold and its projection Xμ is given
by

Xμ = xb4
∂

∂x3
− xc3

∂

∂x4
+ xd8

∂

∂x7
− xe7

∂

∂x8
,
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which is an ωμ-Hamiltonian vector field since

d f μ = ιXμωμ = d

(
1

1 + b
xb+1
4 + 1

c + 1
xc+1
3

)

⊗ e1

+d

(
1

d + 1
xd+1
8 + 1

1 + e
xe+1
7

)

⊗ e2.

According to Theorem 4.2, a point ze is a two-polysymplectic relative equilibrium
point if it is a critical point of hξ for some ξ = (ξ1, ξ2, ξ3) ∈ g � R

3. Then, one has
that

dhξ = d f 1ξ ⊗ e1 + d f 2ξ ⊗ e2

=
(
xb4dx4 + xc3dx3 − ξ2dx5 + ξ3dx1

)
⊗ e1

+
(
(xa6 − ξ1)dx6 + xd8 dx8 + xe7dx7

)
⊗ e2 .

It follows that ξ2 = ξ3 = 0 andwehave two-polysymplectic relative equilibriumpoints
of X of the form ze = (x1, x2, 0, 0, x5, x6, 0, 0) for xa6 = ξ1. In fact, x1, x2, x5, x6 are
arbitrary. Indeed, (Xμe )[ze] = 0 for μe = J�(ze).

To analyse the stability of the above-mentioned two-polysymplectic relative equi-
librium points, let us analyse the second derivatives of hξ at such points ze. Then,

(δ2hξ )ze = (δ2h1ξ )ze ⊗ e1 + (δ2h2ξ )ze ⊗ e2

=
(
cxc−1

3 dx3 ⊗ dx3 + bxb−1
4 dx4 ⊗ dx4

)
⊗ e1

+
(
exe−1

7 dx7 ⊗ dx7 + dxd−1
8 dx8 ⊗ dx8

)
⊗ e2 .

Taking into account that the supplementary spaces toTzeGμe+ker ω1
ze∩Tze (J

�−1(μe))

and TzeGμe + ker ω2
ze ∩ Tze (J

�−1(μe)) can be chosen S1
ze = 〈 ∂

∂x3
, ∂

∂x4
〉 and S2

ze =
〈 ∂
∂x7

, ∂
∂x8

〉, respectively, Definition 4.6 and the posterior explanation give that the ze
are stable two-polysymplectic relative equilibrium points if

(δ2h1ξ )ze (vze , vze ) > 0, ∀vze ∈ S1
ze \ {0},

and
(
δ2h2ξ

)

ze
(vze , vze ) > 0, ∀vze ∈ S2

ze \ {0}.

These inequalities hold if and only if b, c, d, e = 1. Hence, the ze are formally stable
two-polysymplectic relative equilibrium points of X for b, c, d, e = 1. Indeed, it is
immediate that previous conditions of stability imply that in the reduced space close
to the equilibrium point, the coordinates x3, x4, x7, x8 are bounded for every motion
close enough to the equilibrium point, which ensures real stability.
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6 Conclusions and Outlook

In this work, we have devised a new energy–momentum method for systems of
ordinary differential equations given by Hamiltonian vector fields with respect to
a k-polysymplectic form. This led to define and charactere k-polysymplectic rela-
tive equilibrium points and introducing new techniques to study stability through
k-polysymplectic geometry. In this respect, we have also reviewed several aspects and
mistakes in previous Marsden–Weinstein reductions for k-polysymplectic forms and
Hamiltonian systems (Blacker 2019; García-Toraño Andrés and Mestdag 2023; Mar-
rero et al. 2015; Munteanu et al. 2004), which is a relevant part in energy–momentum
methods. To illustrate our new energy–momentum method and theoretical results, we
have studied several relevant examples in detail: complex Schwarz equations, the prod-
uct of several symplectic manifolds, with a family of particles subjected to the effect
of an isotropic potential for each of them, affine homogeneous differential equations
(with potential applications to control theory and Lie systems theory), quantum har-
monic oscillatorswith dissipation, integrable symplectic systems, and some dynamical
systems with polynomial coefficients.

A non-autonomous analogue of the methods devised in this paper could be accom-
plished by using the Lyapunov theory depicted in de Lucas and Zawora (2021). Note
that the stability with respect to k-polysymplectic forms is a topic that requires fur-
ther development. The criteria here used are enough for the family of examples to
be studied, but a deeper study with an analysis of all possibilities is in order. Recall
also that, even in the one-polysymplectic case, the criterion for the stability of the
energy–momentum method, which we here recover as a particular case and is classi-
cal (Abraham and Marsden 1978), is not a necessary condition for the stability of the
reduced system.

The study of complex Schwarz equations and the Schwarzian derivative could be
more appropriately studied through a complex Lie system formalism.We aim to study
this possibility in further works.
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