
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.         (2024) 118:131 
https://doi.org/10.1007/s13398-024-01632-w

ORIG INAL PAPER

On Darboux theorems for geometric structures induced by
closed forms

Xavier Gràcia1 · Javier de Lucas2 · Xavier Rivas3 · Narciso Román-Roy1

Received: 11 July 2023 / Accepted: 7 June 2024
© The Author(s) 2024

Abstract
This work reviews the classical Darboux theorem for symplectic, presymplectic, and cosym-
plectic manifolds (which are used to describe mechanical systems), as well as certain cases of
multisymplectic manifolds, while extends the Darboux theorem in newways to k-symplectic
and k-cosymplectic manifolds (all these structures appear in the geometric formulation of
first-order classical field theories). Moreover, we discuss the existence of Darboux theorems
for classes of precosymplectic, k-presymplectic, k-precosymplectic, and premultisymplec-
tic manifolds, which are the geometrical structures underlying some kinds of singular field
theories, i.e. with locally non-invertible Legendre maps. Approaches to Darboux theorems
based on flat connections associated with geometric structures are given, while new results
on polarisations for (k-)(pre)(co)symplectic structures arise.
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1 Introduction

Since its very origins, differential geometry has been applied to many branches of mathemat-
ical physics to study different kinds of physical systems, and it has led tomany developments.
Symplectic geometry, namely the study of closed non-degenerate two-forms, the so-called
symplectic forms, was one of the first areas of differential geometry to be introduced. Sym-
plectic geometry has its origins in the study of celestial mechanics [45], it has a relevant
role in classical mechanics [2, 10], and it has inspired the development of many other useful
geometric structures with relevant applications [1, 6, 27, 41, 42, 44].

One of the fundamental results in symplectic geometry is the Darboux theorem, which
describes the local structure of finite-dimensional symplectic manifolds [18]. Roughly speak-
ing, the Darboux theorem states that a symplectic form can be locally written as a differential
form with constant coefficients of a particular type, namely as the canonical symplectic form
of a cotangent bundle in adapted coordinates, ω = dqi ∧ dpi [1, 43]. There exist several
types of infinite-dimensional symplectic manifolds, and some of them do not admit a Dar-
boux theorem [46]. Hereafter, we focus on finite-dimensional manifolds, unless otherwise
stated.

The Darboux theorem can be proved in different ways [1, 9], and its proof can be extended
to presymplectic forms, namely closed two-forms of constant rank [17]. It is well-known that
symplectic and presymplectic forms describe the phase spaces for autonomous regular and
singular dynamical systems in mechanics. For non-autonomous mechanical systems, the
suitable structures are the so-called cosymplectic and precosymplectic manifolds [16, 20].

As a preliminary goal, this paper reviews the theory of Darboux theorems for symplectic
and presymplectic manifolds, and it analyses their relation to the so-called flat compatible
symplectic and presymplectic connections [7, 34, 61]. Connections are hereafter assumed
to be linear and torsionless, being the second condition usual in the literature and a key to
the description of certain features of the differential forms and integrable distributions to be
studied in this work. We also provide proofs of the Darboux theorems for cosymplectic and
precosymplectic manifolds. The Darboux theorem for precosymplectic structures is assumed
in many references but its proof seems to be absent in the literature [16].

To achieve a geometrical covariant description of (first-order) classical field theories, the
above-mentioned structures have been generalised in several ways. The simplest ones are the
so-called k-symplectic manifolds, introduced by Awane [4, 6] and used later by de León et al.
[22, 24, 25] andNorris [48, 51] for describingfirst-order classical field theories. They coincide
with the polysymplectic manifolds described by Günther [39] (although these last ones are
different from those introduced by Sardanashvily et al. [35, 56] and Kanatchikov [40], that
are also called polysymplectic). This structure is used to give a geometric description of
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regular field theories whose Lagrangian and/or Hamiltonian functions, in a local description,
do not depend on the space-time coordinates (or the analogous). In the degenerate case we
use k-presymplectic structures, which allow us to describe the corresponding field theories
given by singular Lagrangian functions [37]. It is worth stressing that there exist several ways
of defining k-presymplectic manifolds, some of which have apparently been proposed and
studied in the present work for the first time.

Anatural extension of k-symplecticmanifolds are k-cosymplecticmanifolds, which enable
one to generalise the cosymplectic description of non-autonomous mechanical systems to
regular field theories whose Lagrangian and/or Hamiltonian functions, in a local description,
depend on the space-time coordinates (or the analogous) [21, 23]. As previously, the singular
case of these theories leads to the introduction of k-precosymplectic manifolds, which can
be defined in different manners, as shown in this paper and studied in previous works [38].

The Darboux theorem was generalised and proved for k-symplectic manifolds in [4, 25,
29] and for k-cosymplectic manifolds in [21]. The Darboux theorem plays a relevant role
in these theories since, for instance, it significantly simplifies the proofs of many results
[52]. In this work, we provide a (as far as we know) new Darboux theorem for k-symplectic
and k-cosymplectic linear spaces. We also provide new proofs for the Darboux theorems
for k-symplectic and k-cosymplectic manifolds. Our proofs reveal new properties of such
types of manifolds concerning the properties of their Lagrangian submanifolds. In partic-
ular, new details about the existence of the hereafter called polarisations for k-symplectic
and k-cosymplectic manifolds are obtained. Moreover, classical proofs of the k-symplectic
manifold rely on coordinates and special, rather lengthy calculations [6]. Others are focused
on connections and give indirect proofs [29]. Meanwhile, our proof of the k-symplectic Dar-
boux theorem is intrinsic and short. Moreover, our proof could have been made shorten by
relying on known results, but we decided to give a full explanation of all the structures and
results involved, which made it longer than strictly needed to prove the canonical form of
k-symplectic manifolds.

Darboux theorems for k-symplectic manifolds are closely related to the notion of polari-
sation [4]. This means that we search for coordinates where the k-(co)symplectic structures
take a form with constant coefficients of a particular type. Nevertheless, one could find new
coordinates where the k-(co)symplectic forms would take constant coefficients of another
different type. This would potentially lead to Darboux coordinates of other types.

Moreover, one may try to find coordinates to put the differential forms of a k-symplectic
structure on a canonical manner. This leads to the existence of a certain type of associated
distribution. Notwithstanding, Darboux coordinates can be defined to additionally put a basis
of the distribution in a particular manner. It is worth noting that, in the case of k-symplectic
manifolds, the conditions to obtain Darboux coordinates putting the associated differential
forms into canonical form ensure that there exists a canonical basis of the distribution too.
Meanwhile, our k-cosymplectic Darboux theorem shows that the conditions to put the dif-
ferential forms associated with a k-cosymplectic manifold are different from those needed to
ensure also a canonical form for a basis of the associated distribution. Moreover, our analysis
also sheds some light in the existence of Darboux coordinates for k-cosymplectic manifolds,
and it complements the results given in previous works [32, 49]. In particular, it is worth
noting that Theorem II.4 and Theorem 5.2.1 in [21, 49] can be slightly misleading, as part of
the assumptions needed to prove such theorems are only described in Remark 2.5 and Note
5.2.1, after them, respectively.

Then, we study k-presymplectic manifolds. These structures appear as a side problem in
k-symplectic or multisymplectic theories [29]. We here prove that the very definition of a
k-presymplecticmanifold can be set in different ways, depending on the features that wewant
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them to have, e.g. to fit the analysis of systems we are dealing with. Some of these notions
of k-presymplectic manifold do not admit a Darboux theorem of the initially expected form,
even for the linear k-presymplectic cases. Then, we study some different possible definitions
of k-presymplecticmanifolds, andwe provide some counterexamples showing that aDarboux
theoremdoes not need to exist for them.This is quite unexpected, as itwas previously assumed
that Darboux theorems must be satisfied for them. It is worth noting that the authors in [37]
remark that the existence of a Darboux theorem for k-presymplectic manifolds is an open
problem, although they skip this by giving intrinsic proofs of their results. The same happens
when we consider k-precosymplectic manifolds [38] in order to deal with non-autonomous
field theories described by singular Lagrangian functions.

As in the k-presymplectic manifolds case, one has the same type of problems and similar
solutions are given. A Darboux theorem for precosymplectic manifolds has been provided.
Although this result has been used in the literature [16, 26], it seems that a proof is missing.
More generally, we have provided definitions of k-pre(co)symplectic manifolds admitting
Darboux theorems. This gives an alternative approach to previous point-wise and local Dar-
boux theorems in [29] for the k-presymplectic case. Moreover, our point-wise and local
k-precosymplectic Darboux theorems seem to be new. Note also that k-precosymplectic
manifold do not have canonically defined Reeb vector fields. This causes that the Darboux
theorems may not involve the existence of a basis of them given in a canonical form. More-
over, the distribution defined to put the differential forms of k-precosymplectic manifolds in
a canonical manner does not admit a canonical basis unless additional conditions are given.

Finally, we have the multisymplectic manifolds first introduced by Kijowski, Tulczyjew,
and other authors [31, 36, 41, 42], which constitute one of the most generic structures for
studying the behaviour of Lagrangian and Hamiltonian field theories (see [54] and references
therein). Nevertheless, although there are some partial results [47], a Darboux-type theorem
for multisymplectic manifolds in general is not known. In particular, a class of multisymplec-
tic manifolds with a local structure defined by Darboux type coordinates was characterised
in [13], and certain kinds of multisymplectic manifolds admitting Darboux coordinates have
been described in [19], giving a sufficient condition that guarantees the existence of Darboux
charts.

While studying the different geometric structures, we analyse the existence of linear
connections compatiblewith them. Someof our results are known, see for instance symplectic
connections [7, 34], k-symplectic connections [8], k-cosymplectic [49], multisymplectic and
polysymplectic connections [30]. On the other hand, some of the connections compatible
with these and other structures are here proposed. Moreover, we here review the subject and
serves as a reference point for further works.

The structure of the paper goes as follows. Section2 reviews the Darboux theorems for
symplectic, presymplectic, cosymplectic, and precosymplectic structures and its relation to
flat compatible connections. In Sect. 3, we provide a new proof of the Darboux theorem for
k-symplectic manifolds, which is simpler than previous proofs [4, 6, 53]. We also discuss
the existence of Darboux coordinates in k-presymplectic manifolds and show that in order
to ensure its existence, some very restrictive hypothesis are required. Section4 is devoted
to study the existence of Darboux coordinates in k-(pre)cosymplectic manifolds. We give
a new proof of the Darboux theorem for k-cosymplectic manifolds [21]. We also see that
it is not possible to ensure the existence of Darboux coordinates, unless some additional
conditions are imposed. In Sect. 5 we review the existing results on Darboux coordinates
for (pre)multisymplectic structures. Some new results on this topic are presented. Finally,
Sect. 6 summarises our results and gives some hints on future work. It is worth noting that
we explain how the use of flat connections with torsion may be used to study geometric

123



On Darboux theorems for geometric structures induced... Page 5 of 35   131 

structures related to differential forms that are not closed, such as contact ones. This will be
the topic of another paper.

2 Darboux theorems, flat connections, and symplectic-like structures

Let us set some general assumptions to be used throughout this work. It is hereafter assumed
that all structures are smooth. Manifolds are real, Hausdorff, connected, second countable,
and finite-dimensional. Differential forms are assumed to have constant rank, unless other-
wise stated. Sum over crossed repeated indices is understood. Sometimes, the summation
sign, �, will be used to make clear the range of the indexes we are summing over. All our
considerations are local, to avoid technical problems concerning the global existence of quo-
tient manifolds and similar issues. Hereafter, M and Q are assumed to be manifolds, X(M)

and �k(M) stand for the C∞(M)-modules of vector fields and differential k-forms on M .
Moreover, connections are assumed to be linear and torsion-free.

More particularly, this section reviews (co)symplectic and (co)presymplectic manifolds
and give the corresponding Darboux theorems. It also analyses the relation of Darboux the-
orems with compatible flat connections. We will also introduce the concept of characteristic
distribution, as it will play an important role when generalising, in Sects. 3 and 4, the results
of this section.

2.1 Symplectic and presymplectic manifolds

This section reviews the definition of symplectic and presymplectic manifolds, and it also
analyses their corresponding Darboux theorems. In the context of presymplectic manifolds,
we recall the definition of their characteristic distributions. For symplectic and presymplectic
manifolds, the relation between compatible connections and Darboux coordinates is studied.

Definition 2.1 A symplectic manifold is a pair (M, ω), where M is a manifold and ω is a
closed differential two-form on M that is non-degenerate, i.e. the contraction ιX ω = 0, for
a vector field X on M , if and only if X = 0.

The canonical model for symplectic manifolds is the cotangent bundle of a manifold Q,
namely (T∗Q, ωQ), where ωQ ∈ �2(T∗Q) is the canonical symplectic two-form in T∗Q,
whose local expression in adapted coordinates {qi , pi }ofT∗Q on their associated coordinated
open subset of T∗Q is ωQ = dqi ∧ dpi .

A symplectic manifold (M, ω) gives rise to the musical (vector bundle) isomorphism
� : TQ → T∗Q and its inverse � : T∗Q → TQ naturally induced by the C∞(M)-module
isomorphisms

� : X(M) −→ �1(M)

X �−→ ιX ω

and � = �−1. Note that a vector bundle morphism � can be defined for every two-form ω, but
� only exists when � is invertible or, equivalently, ω is non-degenerate.

Definition 2.2 Let (M, ω) be a symplectic manifold. Given a distribution D ⊂ TM , the
symplectic orthogonal of D is defined by D⊥ = ∐

x∈M D⊥
x , where

D⊥
x = {v ∈ Tx M | ωx (v, u) = 0, ∀u ∈ Dx },
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and
∐

x∈M D⊥
x stands for the disjoint sum of all D⊥

x over x ∈ M .

Symplectic orthogonals allow us to introduce several types of submanifolds of symplectic
manifolds.

Definition 2.3 Let (M, ω) be a symplectic manifold and consider a submanifold N ⊂ M .
Then,

• the submanifold N is said to be isotropic, if TN ⊂ TN⊥.
• the submanifold N is coisotropic, if TN⊥ ⊂ TN .
• the submanifold N is Lagrangian if it is isotropic and coisotropic, namely if TN⊥ = TN .

Lagrangian submanifolds are also calledmaximally isotropic and then 2 dim N = dim M .

Definition 2.4 Two symplectic manifolds (M1, ω1) and (M2, ω2) are symplectomorphic if
there exists a diffeomorphism φ : M1 → M2 such that φ∗ω2 = ω1.

The classical Darboux theorem states that every symplectic manifold is locally symplec-
tomorphic to a cotangent bundle endowed with its canonical symplectic structure [1, 9]. The
Darboux theorem was initially proved by Darboux [18], but its modern standard proof relies
on the so-called Moser’s trick [43, Theorem 22.13]. The statement of the Darboux theorem
for symplectic manifolds goes as follows.

Theorem 2.5 Let (M, ω) be a symplectic manifold. Then, for every x ∈ M, there exist local
coordinates {qi , pi } around x where ω = dqi ∧ dpi .

Note that the Darboux theorem amounts to saying that there exist, on a neighbourhood of
any x ∈ M , two transversal foliations by Lagrangian submanifolds.

In infinite-dimensional manifolds, one can still define a symplectic form, but the induced
musical morphism � : X(M) → �1(M) is, in general, only injective. This gives rise to the so-
called weak symplectic manifolds. Meanwhile, if � : X(M) → �1(M) is an isomorphism,
then the symplectic manifold is said to be a strong symplectic manifold. There exists no
Darboux theorem for general weak symplectic manifolds [46]. Nevertheless, by requiring
appropriate additional conditions, an analogue can be derived [59].

Let us introduce the notion of symplectic connection [7, 57]. Note that the torsion-free
assumption is common in the literature, and it is a key for certain results to be developed.
Indeed, we will show in Sect. 6 that skipping it leads to a more general theory, but more
involved, inappropriate, and unnecessary for our present work. Apart from that last comment
to be given in the conclusions of this work, all connections are assumed to be torsion-free,
unless otherwise stated.

Definition 2.6 A symplectic connection on a symplectic manifold (M, ω) is a connection ∇
on M such that ∇ω = 0. The symplectic form ω is said to be parallel relative to ∇.

Every symplectic manifold admits local symplectic connections.
Indeed, as a consequence of the Darboux theorem, one can construct a local symplectic

flat connection for (M, ω) around every x ∈ M by assuming that its Christoffel symbols
vanish in some Darboux coordinates defined around x .

Such a connection is flat and torsion-free. In general, flat symplectic connections cannot
be globally defined, as it is known that the curvature of a connection is linked to the topology
of the manifold where it is defined on. Milnor proved and surveyed in [50] several results on
the existence of connections on the tangent bundle to a manifold. For instance, the tangent
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bundle to a closed and oriented surface of genus g has no flat connection if |2−2g| ≥ g. The
sphere S2 has zero genus. Hence, there is no flat connection on S

2, which admits a natural
symplectic structure ωS2 that can be defined by considering S

2 embedded in R3 and setting

(ωS2)x (vx , v
′
x ) = 〈x, vx × v′

x 〉, ∀x ∈ R
3, ∀vx , v

′
x ∈ TxS

2 ⊂ TxR
3 � R

3,

where tangent vectors at x ∈ S
2 are naturally understood as vectors in R

3 and, hence, their
vector products are defined. Meanwhile, 〈·, ·〉 stands for the natural scalar product in R3. Let
us recall that, if a connection is flat, the parallel transport of a tangent vector along a path
contained in a small open set U does not depend on the path. Thus, a basis {e1, . . . , en} of
Tx M gives rise, by parallel transport, to a family of vector fields X1, . . . , Xn on U ⊂ M ,
such that Xi (x) = ei for i = 1, . . . , n. Then, ∇Xi X j = 0 and, since ∇ is torsion-free, one
has that

0 = T (Xi , X j ) = ∇Xi X j − ∇X j Xi − [Xi , X j ] = −[Xi , X j ], ∀i, j = 1, . . . , n.

Hence, there exist coordinates {x1, . . . , xn} on a neighbourhood of x such that Xi = ∂/∂xi

for i = 1, . . . , n. Moreover, the Christoffel symbols of the connection vanish on U .
Using the above result and assuming the local existence of a flat torsion-free connection

compatible with a symplectic form, one may prove the Darboux theorem in a very easy
manner. In fact, every symplectic form ω on M can be put into canonical form at any point
x ∈ M for a certain basis {e1, . . . , en} of T∗

x M , i.e.

ωx =
n∑

i=1

e2i−1 ∧ e2i .

Recall that on a neighbourhood of every point x ∈ M , one can define a coordinate system
{x1, . . . , xn} around x so that there exists vector fields Xi = ∂/∂xi , with i = 1, . . . , n, such
that

∇Xi X j = 0, ∀i, j = 1, . . . , n,

and Xi (x) = ei for i = 1, . . . , n. Since ∇ is a compatible symplectic connection for ω, one
has that

∇Xi ω(X j , Xk) = 0, ∀i, j, k = 1, . . . , n.

Hence, one has

ω =
2n∑

i=1

dx2i−1 ∧ dx2i .

In a similar way, but weakening the conditions in Definition 2.1, we can introduce the concept
of presymplectic manifold. Recall that we assume differential forms to have constant rank.

Definition 2.7 A presymplectic form on M is a closed two-form ω ∈ �2(M) of constant
rank. The pair (M, ω) is called a presymplectic manifold.

Let us construct a prototypical example of presymplectic manifold. Let (M, ω) be a
symplectic manifold, and let N be a submanifold of M . Consider the canonical embedding
denoted by jN : N ↪→ M , and endow N with the induced two-form ωN = j∗

Nω, which is
closed. Then, (N , ωN ) is a presymplectic manifold provided the rank of ωN is constant. To
see that the condition on the rank of j∗

Nω is necessary, let us consider the counter example
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given by the canonical two form, ω = dx ∧ dpx + dy ∧ dpy , on T∗
R
2 and the immersed

submanifold given by jT∗R : (x, px ) ∈ T∗
R �→ (x, p2x/2, 0, px ) ∈ T∗

R × T∗
R � T∗

R
2.

Then, j∗
T∗Rω = pxdx ∧ dpx , which is not symplectic at the zero section of T∗

R.
Before introducing the characteristic distribution associated with a presymplectic mani-

fold, let us fix some terminology about distributions. A (generalised) distribution on M is
a subset D ⊂ TM such that D ∩ Tx M is a vector subspace of Tx M for every x ∈ M . A
distribution D on M is said to be smooth if, for every x ∈ M , there exists a neighbourhood
Ux of x and (smooth) vector fields X1, . . . , Xk on Ux so that Dy = 〈X1(y), . . . , Xk(y)〉 for
every y ∈ Ux . A generalised distribution D is regular if it is smooth and has constant rank.
A (generalised) codistribution on M is a subset C ⊂ T∗M such that Cx = C ∩ T∗

x M is a
vector subspace of T∗

x M for every x ∈ M . The smooth and/or regular notions introduced for
distributions also apply to codistributions.

Definition 2.8 Given a presymplectic manifold (M, ω), its characteristic distribution is the
distribution

Cω = ker ω = {v ∈ TM | ω(v, ·) = 0}.
A vector field X ∈ X(M) belonging to Cω, i.e. such that ιX ω = 0, is called a characteristic
vector field of (M, ω).

Note thatCω = ker �. In the case of symplecticmanifolds, � is a vector bundle isomorphism,
and thus Cω = {0}. Moreover, Cω is a distribution becauseω has constant rank. But the kernel
of a general closed two-form does not need to be a smooth generalised distribution. For
example,ωP = (x2+y2)dx∧dy is a closed two-form onR2, but it is not presymplectic, as its
rank is not constant. Moreover, ker ωP is a generalised distribution (ker ωP )(0,0) = T(0,0)R

2

while (ker ωP )(x,y) = 0 for every (x, y) ∈ R
2 different from (0, 0). Indeed, ker ωP is not a

smooth generalised distribution.

Proposition 2.9 The characteristic distribution Cω of a presymplectic manifold (M, ω) is
integrable.

Proof The integrability of Cω follows from the closedness of the symplectic form ω, the
constancy of his rank, and the Frobenius theorem. ��

If ω is a presymplectic form on M , its characteristic distribution is integrable. Moreover,
around every x ∈ M , there exists an open neighbourhoodU of x such that the space of integral
leaves of Cω, let us sayU/Cω, admits a natural manifold structure and the projectionπ : U →
U/Cω is a submersion. Let us prove this fact. Since Cω is integrable, the Frobenius theorem
ensures that, for every x ∈ M , there exists a local basis of vector fields, {∂/∂x1, . . . , ∂/∂xk},
spanning Cω on a coordinated neighbourhood Ux of x with coordinates {x1, . . . , xn}. In a
small enough open subsetU ofUx containing x , one can assume that x1, . . . , xn take values
in an open ball of Rn . Then, the space of leaves of U/Cω is a manifold of dimension n − k
and the mapping π : U → R

n−k is an open submersion. We will then say that Cω is simple
on U . Since ω is invariant relative to the elements of its characteristic distribution, and it
vanishes on them, there exists a unique two-form ω̃ on U/Cω such that π∗ω̃ = ω. In this
way, ω̃ is closed and nondegenerate because if ιXC ω̃ = 0, then there exists a vector field X
on U such that π∗X = XC , and then ιX ω = 0. Since Cω = ker ω = ker Tπ , then XC = 0.

With this in mind, we are ready to state the Darboux theorem for presymplectic forms.
Note that this theorem can be stated since presymplectic forms are assumed to have constant
rank. Otherwise, it would be difficult to establish a series of canonical forms for closed
two-forms even in the most simple cases, e.g. on R

2.
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Theorem 2.10 (Darboux theorem for presymplectic manifolds) Consider a presymplectic
manifold (M, ω). Around every point x ∈ M, there exist local coordinates {qi , pi , z j },
where i = 1, . . . , r and j = 1, . . . , d, such that

ω =
r∑

i=1

dqi ∧ dpi ,

where 2r is the rank ofω. In particular, if r = 0, thenω = 0 and d = dim M. If 2r = dim M,
then d = 0 and {qi , pi } give a local coordinate system of M.

Proof Consider an open neighbourhood V of x ∈ M where the integral foliationF defined by
the distribution Cω = ker ω is simple. Let P be themanifold of leaves ofF |V and letπ : V →
P be the canonical projection. There exists a symplectic form ω̄ on P given by ω = π∗ω̄.
The Darboux theorem for symplectic manifolds ensures that there exists an open coordinate
neighbourhood Ū ⊂ P ofπ(x)with local coordinates {q̄1, . . . , q̄r , p̄1, . . . , p̄r } such that ω̄ =∑r

i=1 dq̄
i∧d p̄i on Ū . Define qi = q̄ i ◦π and pi = p̄i ◦π for i = 1, . . . , r andwe choose d =

dim M−2r other functions z1, . . . , zd , functionally independent relative to the previous ones.
This gives rise to a local coordinate system {q1, . . . , qr , p1, . . . , pr , z1, . . . , zd} around x .
This chart satisfies the conditions of the theorem. ��

The definition of a presymplectic connection is a straightforward generalisation of
Definition 2.6 to the presymplectic realm (see [61]).

Definition 2.11 A presymplectic connection relative to a presymplectic manifold (M, ω) is
a connection ∇ on M such that ∇ω = 0.

The Darboux theorem for presymplectic forms implies that there exists, locally, a flat
presymplectic connection. The other way around, the existence of a flat presymplectic con-
nection for a presymplectic manifold (M, ω) allows us to prove the Darboux theorem as in
the case of symplectic forms. In particular, we have proved the following.

Lemma 2.12 Every presymplectic manifold (M, ω) admits locally defined flat presymplectic
connections ∇, i.e. ∇ω = 0.

At this point, it becomes clear that if a differential form admits a compatible flat torsion-
less connection, it must be closed. Hence, no flat torsion-less compatible connection exist
for contact forms, locally conformally symplectic forms, and other differential forms that are
not closed [33, 60]. We have stressed the word “torsion-less” despite every connection in this
work is assumed to be so, because in the conclusions of this work will show that removing
this condition may lead to deal with no-closed differential forms.

2.2 Cosymplectic and precosymplectic manifolds

Let us review the definition of cosymplectic [3, 11, 26] and precosymplectic [16] mani-
folds, their corresponding Darboux theorems, and their relations to flat cosymplectic and
precosymplectic connections.

Definition 2.13 A cosymplectic structure in M is a pair (ω, η), where ω ∈ �2(M) and
η ∈ �1(M) are closed differential forms such that η does not vanish and ker η⊕ker ω = TM .
The triple (M, ω, η) is said to be a cosymplectic manifold.
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Note that a cosymplectic structure on M implies that M is odd-dimensional. The fact that
η is non-vanishing implies that 〈η〉 ⊕ Imω = T∗M and dim M = 2n + 1 for n ≥ 0. Then,
(M, ω, η) is a cosymplectic manifold if and only if η∧ωn is a volume form on M , where we
assume that ω0 = 1. In particular, a cosymplectic manifold (M, ω, η) yields a presymplectic
manifold (M, ω). Note that the case dim M = 1 may give rise to a cosymplectic manifold
according to our definition [58].

The characteristic distribution of a cosymplectic manifold (M, ω, η) is the rank one
distribution given by Cω = ker ω, and it is often called the Reeb distribution. The following
proposition states that (M, ω, η) induces a unique distinguished vector field, called Reeb
vector field, taking values in ker ω.

Proposition 2.14 Given a cosymplectic manifold (M, ω, η), there exists a unique vector field
R ∈ X(M) that satisfies

ιR η = 1, ιR ω = 0.

Acosymplectic manifold (M, ω, η) induces aC∞(M)-module isomorphism � : X(M) →
�1(M) given by �(X) = ιX ω + (ιX η)η, whose inverse map is denoted by � = �−1. Then,
the Reeb vector field R reads

R = �η.

Consider the product manifold R × T∗Q and the projections π1 : R × T∗Q → R and
π2 : R × T∗Q → T∗Q onto the first and second manifolds in R × T∗Q. If t is the natural
coordinate in R and ωQ is the canonical symplectic form on T∗Q, then the triple

(R × T∗Q, π∗
2ωQ, π∗

1 dt) (1)

is a cosymplectic manifold. Let us consider the pull-back of t to R × T∗Q via π1, and the
pull-back of some Darboux coordinates {qi , pi } for ωQ to R × T∗Q via π2. Let us denote
such pull-backs in the same way as the original coordinates to simplify the notation. Then,
in the coordinates {t, qi , pi }, the Reeb vector field of (R × T∗Q, π∗

2ωQ, π∗
1 dt) read ∂/∂t .

Locally, π∗
2ωQ = dqi ∧ dpi and π∗

1 dt = dt .

Theorem 2.15 (Cosymplectic Darboux theorem [26]) Given a cosymplectic manifold
(M, ω, η), there exists, around each point x ∈ M, local coordinates {t, qi , pi }, where
1 ≤ i ≤ n, such that

η = dt, ω = dqi ∧ dpi .

Proof Since (M, ω) is a presymplectic manifold and ω has corank one, there exist for any
point x ∈ M a neighbourhoodU of x with coordinates {s, qi , pi }, with i = 1, . . . , n, so that
ω = dqi ∧ dpi . Consider now a potential function of η, which exists because η is closed,
and denote it by t . Since η ∧ ωn is a volume form, {t, qi , pi } is a coordinate system around
x and η = dt and ω = dqi ∧ dpi . ��

TheDarboux theorem for cosymplectic manifolds states that every cosymplectic manifold
is locally diffeomorphic to the canonical model (1) (see [11, 26]). In Darboux coordinates,
the Reeb vector field R for a cosymplectic manifold (M, ω, η) is written as R = ∂

∂t .
The Darboux theorem for cosymplectic structures implies that there exists, around each

point, a flat connection ∇ such that ∇η = 0 and ∇ω = 0. Indeed, ∇ can be chosen to be
the connection with zero Christoffel symbols relative to some Darboux coordinates. This
justifies the following definition.
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Definition 2.16 A cosymplectic connection relative to (M, ω, η) is a connection on M such
that ∇η = 0 and ∇ω = 0.

Let us show that the existence of flat cosymplectic connections allows us to prove the
Darboux theorem for (M, ω, η). At a point x ∈ M , the fact that ker ηx ⊕ ker ωx = Tx M
implies that there exists a basis of Tx M of the form {e1, . . . , e2n+1} so that ηx = e2n+1 and
ωx = ∑n

i=1 e
2i−1 ∧ e2i relative to the dual basis {e1, . . . , e2n+1} in T∗

x M . Due to the fact
that ∇ is flat, there exists a family of commuting parallel vector fields X1, . . . , X2n+1 such
that Xi (x) = ei for i = 1, . . . , 2n + 1. Since

∇Xi [η(X j )] = 0, ∇Xi [ω(X j , Xk)] = 0, i, j, k = 1, . . . , 2n + 1,

the dual basis of differential one-forms τ 1, . . . , τ 2n+1 to X1, . . . , X2n+1 is such that

η = τ 2n+1, ω =
n∑

i=1

τ 2i−1 ∧ τ 2i .

Since X1, . . . , X2n+1 admit a coordinate system so that Xi = ∂/∂xi , with i = 1, . . . , 2n+1,
then τ i = dxi for i = 1, . . . , 2n + 1, and the Darboux theorem for cosymplectic manifolds
follows. Note that this is due to the fact that the connection is assumed to be torsion-free.

Cosymplectic manifolds can be generalised by assuming that η ∈ �1(M) andω ∈ �2(M)

are closed forms on M , but ker η ∩ ker ω is a distribution of fixed rank that is not necessarily
zero. This implies that ω is a presymplectic form on M . This gives rise to the definition
of a precosymplectic manifold. When ker η ∩ ker ω = {0}, one retrieves the definition of a
cosymplectic manifold.

Definition 2.17 A precosymplectic structure in M is a pair (ω, η), where ω ∈ �2(M) and
η ∈ �1(M) are closed differential forms such that ker η ∩ ker ω is a regular distribution
strictly included in ker ω at every x ∈ M .

If rank ω = 2r < dim M , the triple (M, ω, η) is said to be a precosymplectic manifold of
rank 2r .

It is worth stressing that the fact that ker η∩ker ω is a regular distribution strictly contained
in ker ω implies that η ∧ ωr is a non-vanishing form and ωr+1 = 0 for a certain fixed r , and
conversely. Therefore, ω has constant rank 2r , with 2r < dim M .

Remark 2.18 Let (P, ω) be a presymplectic manifold with Darboux coordinates {qi , pi , z j }.
Consider the manifold R× P with the induced coordinates {t, qi , pi , z j } obtained as usual,
namely, qi , pi , z j are the pull-back to R × P of the chosen variables in P . Then, (R ×
P, π∗

2ω, π∗
1 dt) is a precosymplectic manifold. In the obtained local coordinates, π∗

2ω =
dqi ∧ dpi while π∗

1 dt is denoted by dt to simplify the notation.

Remark 2.19 Consider the regular distribution D = ker ω ∩ ker η of a precosymplectic
manifold (M, ω, η). Then, D is involutive because ker ω and ker η are so. The foliation
associated with D defines a local projection

π : M → M̃ = M/(ker ω ∩ ker η), (2)

where M̃ is the quotient manifold of the leaves of D. Recall that we are assuming that M̃ is a
manifold for simplicity. Indeed, one of the general assumptions of our paper is that manifold
structures and other existing mathematical local structures are defined globally. Actually,
one can only ensure that for every x ∈ M and a local neighbourhood Ux of x , the space
M/(ker ω ∩ ker η) is a manifold. Hence, by our general assumptions, there exists a unique
cosymplectic structure (ω̃, η̃) on M̃ such that π∗ω̃ = ω and π∗η̃ = η.
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As in the case of cosymplectic manifolds, we can define special types of vector fields for
precosymplectic manifolds.

Definition 2.20 Given a precosymplectic manifold (M, ω, η), a vector field X ∈ X(M)

satisfying

ιX ω = 0, ιX η = 1,

is called a Reeb vector field. The space generated by Reeb vector fields, namely ker ω, is
called the Reeb distribution of (M, ω, η).

Note that, if R ∈ X(M) is a Reeb vector field, then R + Y is also a Reeb vector field for
every Y ∈ ker ω ∩ ker η. In other words, Reeb vector fields for precosymplectic manifolds
need not be univocally defined.

Finally, let us state the Darboux theorem for precosymplectic manifolds, whose proof
seems, as far as we know, to be absent in the literature. Nevertheless, it is always implicitly
assumed that it holds [16, 26] and it is quite straightforward.

Theorem 2.21 (Darboux Theorem for precosymplectic manifolds) Let (M, ω, η) be a pre-
cosymplectic manifold with rank ω = 2r ≤ dim M − 1. For every x ∈ M, there exist local
coordinates {t, qi , pi , z j } around x, where 1 ≤ i ≤ r and 1 ≤ j ≤ dim M − 1 − 2r , such
that

η = dt, ω =
r∑

i=1

dqi ∧ dpi . (3)

Proof Sinceω is a presymplectic form, there exist coordinates {qi , pi , z′i }on aneighbourhood
U of x such that ω = ∑r

i=1 dq
i ∧ dpi . Since (ker η ∩ ker ω)◦ = 〈η〉 ⊕ Imω and η does not

vanish, one has that rankω ≤ dim M−1. One the other hand, η is closed and, therefore, there
exists a function t onU , whereU can be chosen smaller if necessary, such thatη = dt andω =
dqi ∧ dpi . Since η ∧ ωr does not vanish, {t, qi , pi } are functionally independent functions.
Finally, one can choose additional functionally independent coordinates, z1, . . . , zn with
respect to {t, qi , pi } and (3) will hold. ��

As in the previous cases, there exists a locally defined flat connection ∇ whose Christof-
fel symbols vanish on the chosen Darboux coordinates. Then, η and ω become parallel
differential forms relative to ∇. This motivates the following natural definition.

Definition 2.22 A precosymplectic connection relative to a precosymplectic manifold
(M, η, ω) is a connection on M such that ∇η = 0 and ∇ω = 0.

Note that, as previously, the existence of a flat precosymplectic connection allows one to
provide a brief proof of the Darboux theorem for precosymplectic manifolds.

3 k-symplectic and k-presymplectic manifolds

Let us introduce and provide Darboux theorems for k-symplectic manifolds. This will give a
new, complementary approach, to the classical results [4, 14] and some new more mod-
ern approaches [29]. Moreover, we will discuss the existence of Darboux theorems for
k-presymplectic manifolds. Furthermore, this will be done by providing new simpler, shorter
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and more geometrical proofs of Darboux theorems for k-symplectic manifolds while giving
more details and, as far as we know, a new Darboux theorem for linear spaces [4]. Addition-
ally, we will give a new proof about the existence of a complementary for a polarisation that
is isotropic relative to the differential two-forms of a k-symplectic structure. On the other
hand,Darboux theorems give rise to the hereafter called flat k-symplectic and k-presymplectic
connections, which, in turn, lead to other proofs of respective Darboux theorems. It is worth
noting that an alternative, somehowdifferent, development of these ideas for the k-symplectic
case can be found in [14]. Moreover, some new structures will arise in our approach and our
results concerning k-presymplectic manifolds seem to be absolutely new.

Definition 3.1 Let M be an n(k+1)-dimensional manifold. A k-symplectic structure on M
is a family (ω1, . . . , ωk, V ), where V is an integrable distribution on M of rank nk, and
ω1, . . . , ωk are closed differential 2-forms on M satisfying that

(1) ωα|V×V = 0, for 1 ≤ α ≤ k,
(2)

⋂k
α=1 ker ω

α = {0}.
Under the above hypotheses, (M, ω1, . . . , ωk, V ) is called a k-symplectic manifold. We call
V a polarisation of the k-symplectic manifold.

Our notion of k-symplectic manifold matches the one given by Awane [4, 6]. Moreover,
it is equivalent to the concepts of standard polysymplectic structure of Günther [39] and
integrable p-almost cotangent structure introduced by de León et al. [24, 25]. In the case
k = 1, Awane’s definition reduces to the notion of polarised symplectic manifold, that is a
symplectic manifold with a Lagrangian foliation. We will illustrate in forthcoming examples
that the distribution V is needed to ensure the existence of a particular type of Darboux
coordinates.

In fact, Günther calls polysymplectic manifolds the differential geometric structures
obtained from our definition by removing the existence of the distribution V . Meanwhile, a
standard polysymplectic manifold in Günther’s paper is a polysymplectic manifold admit-
ting an atlas of Darboux coordinates. Note that a polysymplectic manifold may have atlas of
Darboux coordinates without a distribution V . In a particular case, if we think of symplectic
manifolds as a one-symplectic manifold, then it is clear that it has local Darboux coordi-
nates, but the standard symplectic manifold on the sphere does not have a polarisation [5].
Then, Günther’s definition is more general than ours, while it is equivalent to our definition
if the compatibility of two charts Darboux coordinates {yi , pα

i } and {xi , πα
i } involves that

x = x(y) and the momenta are transformed accordingly, namely πα = πα(y, p) are the
momenta of the {xi }. Otherwise, the equivalence is only local.

Let us provide a Darboux theorem at the tangent space of a point of a k-symplectic
manifold. Since every k-symplectic manifold (M, ω1, . . . , ωk, V ) induces at every Tx M for
x ∈ M a so-called k-symplectic vector space, Theorem 3.2 can be understood as a Darboux
theorem for k-symplectic vector spaces.

Theorem 3.2 (k-symplectic linear Darboux theorem) Assume that (M, ω1, . . . , ωk, V ) is a
k-symplectic manifold. For every x ∈ M, there exists a basis {e1, . . . , en; eβ

1 , . . . , eβ
n }β=1,...,k

of T∗
x M such that

ωβ =
n∑

i=1

ei ∧ eβ
i , V =

k⊕

α=1

Vα, Vβ = 〈e1β, . . . , enβ〉, β = 1, . . . , k.

Note that {e1, . . . , en, e1β, . . . , enβ} is the dual basis in Tx M.
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Proof The result amounts to the Darboux theorem for symplectic linear spaces for k = 1.
Hence, let us assume k > 1. Since {0} = ⋂k

α=1 ker ω
α , one has that

T∗
x M = Imω1

x + · · · + Imωk
x , ∀x ∈ M . (4)

Although all posterior structures in this proof refer to the point x , the point will be omitted
to simplify the notation. Since ωβ |V×V = 0, one has that ωβ(V ) ⊂ V ◦ for β = 1, . . . , k.
If W is a regular distribution supplementary to V , then rankW = n, and rank ωβ (W ) ≤ n.
Note that

ω1(V ) + · · · + ωk(V ) ⊂ V ◦.

Due to (4) and the above discussion, one has that

ω1(W ) + · · · + ωk(W )

is a distribution of rank nk, at least. This implies that rank ωβ(W ) = n and

ω1(W ) ⊕ · · · ⊕ ωk(W ) ⊕ V ◦ = T∗M, V ◦ = ω1(V ) + · · · + ωk(V ).

Ifωα(v+w) = 0,wherev ∈ V andw ∈ W , thenωα(v) = −ωα(w). Sinceωα(W )∩ωα(V ) =
0 and rank ωα|W = n, then ωα(v) = 0 and ωα(w) = 0, which implies that w = 0 and
v ∈ ker ωα . Hence, ker ωα ⊂ V . We can consider the distributions

Vβ =
⋂

1≤α≤k
α �=β

ker ωα, β = 1, . . . , k �= 1, or V 1 = V (k = 1).

Note that ωβ(Vα) = 0 for α �= β and for every α, β = 1, . . . , k.
Let {w1, . . . , wn} be a basis of W . Since ωα(W ) has rank n and its elements do not

belong to V ◦, then the restrictions of ωα(w1), . . . , ω
α(wn) to V are linearly independent

and there exist v1, . . . , vn in V such that ωα(v1), . . . , ω
α(vn) are linearly independent on

W , e.g. ωα(wi , v j ) = δi j for i, j = 1, . . . , n. Hence, rank ωα(V ) ≥ n. Since ωα(V ) ⊂ V ◦,
then rank ωα(V ) = n. In particular, rank ωα(V ) = n for every α = 1, . . . , k. Since⋂k

α=1 ker ω
α = 0 and Imωα(V ) ⊂ V α for α = 1, . . . , k, it follows that φ : v ∈ V �→

(ω1(v), . . . , ωk(v)) ∈ V ◦ ⊕ (k)· · · ⊕ V ◦, where ⊕ stands for a Whitney sum of vector bundles
in the natural way, is injective. Hence, φ becomes an isomorphism and V � ⊕k

α=1 Vα .
Indeed, v = ∑k

α=1 φ−1(prα(v)), where prα : (w1, . . . , wk) ∈ V ◦ ⊕ · · · ⊕ V ◦ �→
(0, . . . , 0, wα, 0, . . . , 0) �→ V ◦ ⊕ · · · ⊕ V ◦, is the corresponding decomposition.

SinceV = ⊕k
α=1 Vα andωβ(Vβ) ⊂ V ◦ has the same rank asV β , it follows that rank Vβ =

n. Hence, one can consider a basis {e1, . . . , en} of V ◦. There exists a basis f 1β , . . . , f nβ of

each V β such that ωα( f iβ) = −eiδβ
α for i = 1, . . . , n and α, β = 1 . . . , k. Considering a

dual basis { f β
i , ei } of T∗

x M , one has that

ωβ = ei ∧ f β
i + cβ

i j e
i ∧ e j , β = 1, . . . , k. (5)

If eβ
i = f β

i + cβ
i j e

j , then

ωβ =
n∑

i=2

ei ∧ eβ
i , β = 1, . . . , k.
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Note that the change on the covectors eβ
i implies that, in the dual bases to the bases {ei , eα

i }
and {ei , f α

i } in T∗
x M , one has that f iα = eiα for α = 1, . . . , k and i = 1, . . . , n. Hence,

Vα = 〈 f 1α , . . . , f nα 〉 = 〈e1α, . . . , enα〉 for α = 1, . . . , k. ��
It stems from Theorem 3.2 that ω1, . . . , ωk have constant rank. This fact comes from the

definition of k-symplectic structure, the dimension of M , and the rank of V . Note also that
the last paragraph in the proof of Theorem 3.2 can be almost straightforwardly changed to
put a symplectic linear form and a Lagrangian subspace into a canonical form.

Definition 3.3 Given a k-symplectic manifold (M, ω1, . . . , ωk, V ) with k �= 1, we set

Vβ =
k⋂

α=1
α �=β

ker ωα, β = 1, . . . , k.

Lemma 3.4 For a k-symplectic manifold (M, ω1, . . . , ωk, V ), the distributions V 1, . . . , V k

satisfy that every x ∈ M admits a coordinate system {y1, . . . , yn; yα
1 , . . . , yα

n } on a
neighbourhood of x so that

Vα =
〈

∂

∂ yα
1

, . . . ,
∂

∂ yα
n

〉

, α = 1, . . . , k.

Proof Let y1, . . . , yn be common functionally independent first-integrals for all vector fields
taking values in V . If k = 1, the result follows trivially, so we assume k > 1. Given different
α1, . . . , αk−1 ∈ {1, . . . , k}, one has that

Vα1 ⊕ · · · ⊕ Vαk−1 = ker ωβ,

where β is the only number in {1, . . . , k} not included in {α1, . . . , αk−1}. Hence, the distribu-
tion Vα1 ⊕· · ·⊕Vαk−1 has rank n(k −1), it is integrable because ωβ is closed, and the vector

fields taking values in it have n common local first-integrals yβ
1 , . . . , yβ

n such that dyβ
1 ∧

· · ·∧dyβ
n ∧dy1 ∧· · ·∧dyn �= 0. By construction, {y11 , . . . , y1n , . . . , yk1 , . . . , ykn , y1, . . . , yn}

becomes a local coordinate system on M and

Vα =
(

n⋂

i=1

ker dyi
)

∩

⎛

⎜
⎜
⎝

⋂

β �=α
i=1,...,n

ker dyβ
i

⎞

⎟
⎟
⎠ .

Moreover,
∂

∂ yβ
1

, . . . ,
∂

∂ yβ
n

vanish on all coordinates yα
1 , . . . , yα

n with α �= β. Hence,

Vβ =
〈

∂

∂ yβ
1

, . . . ,
∂

∂ yβ
n

〉

=
k⋂

α �=β=1

ker ωα, β = 1, . . . , k.

��
Theorem 3.5 (Darboux theorem for k-symplectic manifolds) Let (M, ω1, . . . , ωk, V ) be a
k-symplectic manifold. Around every point x ∈ M, there exist local coordinates {qi , pα

i },
with 1 ≤ i ≤ n and 1 ≤ α ≤ k, such that

ωα =
n∑

i=1

dqi ∧ dpα
i , V =

〈
∂

∂ pα
i

〉

i = 1, . . . , n,

α = 1, . . . , k

. (6)
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Proof By our Darboux theorem for k-symplectic vector spaces, namely Theorem 3.2, there
exists a basis {e1, . . . , en; eα

1 , . . . , eα
n }α=1,...,k of T∗

x M such that ωα
x = ∑n

i=1 e
i ∧ eα

i for
α = 1, . . . , k. The basis is chosen so that the dual basis {e1, . . . , en, e1α, . . . , enα}, with
α = 1, . . . , k, is such that V = 〈eiα〉α=1,...,k

i=1,...,n
. Recall that the subspaces in Tx M of the

form

Vβx =
k⋂

α=1
α �=β

ker ωα
x =

〈
eβ
1 , . . . , eβ

n

〉
, β = 1, . . . , k,

satisfy that Vx = ⊕k
β=1 Vβx . By Lemma 3.4, there exist variables {y j , yβ

j }, with j =
1, . . . , n and β = 1, . . . , k, such that, locally, V β =

〈
∂

∂ yβ
1

, . . . , ∂

∂ yβ
n

〉
, with β = 1, . . . , k.

Moreover, ker ωβ = ⊕
α �=β V α . Using previous results and since ωβ

∣
∣
V×V = 0, we have

ωβ = f jβ
i dyi ∧ dyβ

j + gi jdyi ∧ dy j for certain functions gi j , f jβ
i , with i, j = 1, . . . , n

and β = 1, . . . , k. Since dωβ = 0, it follows that f jβ
i = f jβ

i (yl , yβ
l ) and gi j = gi j (yl , y

β
l )

for i, j, l = 1, . . . , n. Therefore, each ωβ can be considered as a differential two-form on
R
2n . Moreover, each V β can be then considered as a Lagrangian distribution of a symplectic

two-form ωβ , when it is considered as a differential two-form on R
2n . Consequently, for a

fixed β, one has

0 = − ∂

∂ yβ
j

yi = ι
Xβ

yi
ι
∂/∂ yβ

j
ωβ, i, j = 1, . . . , n �⇒ Xβ

yi
∈ (Vβ)⊥ = Vβ,

i = 1, . . . , n.

Note that the orthogonal is relative to the restriction of ωβ to R2n . Whatever, by additionally
considering ι

Xβ

yi
ωα = 0 for α �= β, one can also see that Xβ

yi
becomes a vector field taking

values in V β . What follows is an adaptation of the Liouville–Mineur–Arnold theorem (see
also [15]). Since V α is integrable, we can consider a leaf F of V α and its canonical inclusion
jF : F ↪→ M . Let us define the map ζ : x ∈ M �→ (y1(x), . . . , yn(x)) ∈ R

n . Consider
a regular point x ′ ∈ M of ζ . Since the map ζ is regular in an open neighbourhood of x ′,
there exist vector fields Y1, . . . , Yn on a neighbourhood of x ′ such that Yi and ∂

∂ yi
on Rn are

ζ -related for i = 1, . . . , n. Consider the inner contractions �α
i = ιYi ωα for i = 1, . . . , n on

a neighbourhood of x ′ in M and the vector fields Xα
yi
, which take values in Vα . Then,

ιXα

yi
�α

j = ιXα

yi
ιY j ωα = ωα(Y j , X

α
yi ) = −ωα(Xα

yi , Y j ) = −Y j y
i = −δij , i, j = 1, . . . , n.

Hence, given two vector fields Xα
yi

, Xα
y j , one has

(d�α
� )(Xα

yi , X
α
y j ) = Xα

yi �
α
� (Xα

y j ) − Xα
y j �

α
� (Xα

yi ) − �α
� ([Xα

yi , X
α
y j ]) = 0.

The latter is due to the fact that [Xα
yi

, Xα
y j ] is the Hamiltonian vector field of {yi , y j } =

Xα
y j y

i = 0 because Xy j takes values in Vα . Thus, j∗
F�α is closed and there exists a potential

j∗
F�α

i = dpα
i . And recalling that ω

α|Vα×Vα = 0, it follows that ωα = dyi ∧ dpα
i . Moreover,

it follows that

Vα =
〈

∂

∂ pα
i

〉

, α = 1, . . . , k,
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and V takes the proposed form. ��
Let us recall that the above proof could have been cut by the half by referring straightfor-

wardly to the Liouville–Mineur–Arnold theorem, as since {yi , y j } = 0, with i, j = 1, . . . , n,

that theorem implies that there are functions pβ
1 , . . . , pβ

n with β = 1, . . . , k such that

ωβ = dyi ∧ dpβ
i for each β = 1, . . . , k. Instead, we decided to give a complete, self-

contained proof. Without this full explanation, Theorem 3.5 would probably be the shortest
direct proof of the Darboux theorem for k-symplectic manifolds in the literature. Although
Theorem 3.5 relies on Lemma 3.4 and the k-symplectic linear Darboux theorem, Lemma 3.4
is a rather straightforward geometric result, which was described carefully to verify all the
details, and only the fact that V = ⊕k

α=1 V
α is needed from the k-symplectic linear Darboux

theorem to prove our full k-symplectic Darboux theorem.
Moreover, note that one could have assumed that Darboux coordinates only are concerned

with the canonical expressions of ω1, . . . , ωk . It turns out that given the conditions on the
distribution, once we put ω1, . . . , ωk in a canonical manner, we also put a basis of V in the
desired form. We will see in next section that this is not the case for Darboux coordinates for
other structures.

Definition 3.6 Given a k-symplectic manifold (M, ω1, . . . , ωk, V ), we call k-symplectic
Darboux coordinates the coordinates allowing us to write ω1, . . . , ωk and V in the form
(6).

The k-symplectic Darboux coordinates will be called just Darboux coordinates when
it does not lead to any misunderstanding. Note that the proof of Theorem 3.5 shows
that k-symplectic Darboux coordinates induce the existence of a distribution V ′ =
〈∂/∂ y1, . . . , ∂/∂ yn〉 that allows us to state the following result.

Corollary 3.7 Every k-symplectic manifold (M, ω1, . . . , ωk, V ) admits, locally, a supple-
mentary integrable distribution V ′ on M such that V ⊕ V ′ = TM and ωα|V ′×V ′ = 0 for
α = 1, . . . , k.

The canonicalmodel of a k-symplecticmanifold is the cotangent bundle of k1-covelocities,

namely
⊕k T∗Q = T∗Q⊕ k· · ·⊕T∗Q (theWhitney sumof k copies of the cotangent bundle of

amanifoldQ), equippedwith the distributionV = ker Tπ ,whereπα : ⊕k T∗Q → T∗Q and
π : ⊕k T∗Q → Q are the canonical projections onto theα-th component and Q respectively,
and the canonical presymplectic two-formsωα = (πα)∗ωwith α = 1, . . . , k, whereω stands
for the canonical symplectic two-form in T∗Q. In thismodel, natural coordinates areDarboux
coordinates, and the k-symplectic Darboux theorem states that k-symplectic manifolds are
locally diffeomorphic to a cotangent bundle of k1-covelocities. Meanwhile, the distribution
V ′ is a distribution in

⊕k
α=1 T

∗Q whose leaves project diffeomorphically onto Q.
As in the previous sections, one can introduce the notion of compatible connection with

a k-symplectic manifold [8, 14].

Definition 3.8 A k-symplectic connection on a k-symplectic manifold (M, ωα, V ) is a
connection ∇ on M such that ∇ωα = 0 for every α = 1, . . . , k.

Again,Darboux coordinates allowus to define, locally, a connection,∇, such that∇ωα = 0
for α = 1, . . . , k. And vice versa, the k-symplectic linear Darboux Theorem allows us to
put ω1, . . . , ωk and the distribution V into a canonical form on the tangent space at a point
and, a flat connection compatible with the k-symplectic manifold enables us to expand this
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canonical form to an open neighbourhood of the initial point where ω1, . . . , ωk and V take
the form (6).

It is worth recalling the interesting work [14], where connections compatible with k-
symplectic structures are studied. These connections depend on the existence of certain
foliations and are canonical once such foliations are given. By using such foliations and
distributions, the Darboux theorem can be proved. We find that our approach here is more
direct than that in [14] and theDarboux theorem is given in ourworkmore geometrically.Note
that a k-symplectic Darboux theorem also appears as a particular case of the multisymplectic
theory in [29].

Now, let us study Darboux theorems for k-presymplectic manifolds (see [30, 37] for some
previous results on this case). This case poses several fundamental problems. First, there
exist several possible definitions of k-presymplectic manifolds depending on their possible
applications or representative cases. Some possible definition of k-presymplectic manifold
can be found in [30]. Meanwhile, [37] defines a k-presymplectic manifold as a manifold
equipped with k closed two-forms. It is clear that we will not have Darboux coordinates with
such a general definition. As shown next, a direct analogue of the Darboux coordinates is not
available in some of the possible definitions of k-presymplectic structure, while cases that
admit Darboux coordinates may not be of physical interest. Let us give a brief analysis of
this matter.

Definition 3.9 Let
⊕k

α=1 T
∗Q be endowed with its canonical k-symplectic structure

ω1, . . . , ωk and let π : ⊕k
α=1 T

∗Q → Q be the canonical projection onto Q. A canon-
ical foliated k-presymplectic manifold is a tuple (S, ω1

S, . . . , ω
k
S) given by a submanifold

S ⊂ ⊕k
α=1 T

∗Q such that π |S : S → Q is a fibre bundle and S is endowed, for
jS : S → ⊕k

α=1 T
∗Q being the canonical inclusion, with the k differential two-forms

ωα
S = j∗

Sωα , for α = 1, . . . , k. The rank of the fibration π |S : S → Q is called the
rank of (S, ω1

S, . . . , ω
k
S) while ω1

S, . . . , ω
k
S are called a canonical foliated k-presymplectic

structure.

More generally, the above gives rise to the following definition.

Definition 3.10 A foliated k-presymplectic manifold is a tuple (M, ω1, . . . , ωk) such that
there exists a canonical foliated k-presymplectic manifold (S, ω1

S, . . . , ω
k
S) and a global dif-

feomorphismφ : M → S such thatφ∗ωα
S = ωα forα = 1, . . . , k. A foliated k-presymplectic

manifold (M, ω1, . . . , ωk) is exact if ω1, . . . , ωk are exact.

It is worth noting that the previous definition also makes sense for φ being, only, a local
diffeomorphism. In that case, the main results to be displayed afterward remain valid, but
many more technical details are to be considered to prove them. To keep our presentation
simple and highlight the main ideas about Darboux coordinates, which are generically local,
we have defined φ to be a global diffeomorphism.

Definition 3.9 implies that ω1
S, . . . , ω

k
S admit a natural distribution V = ker Tπ ∩ TS of

rank dim S − dim Q such that ωα
S |V×V = 0 for α = 1, . . . , k. If S = ⊕k

α=1 T
∗Q, then

V = ker Tπ and S gives rise to a k-symplectic structure admitting Darboux coordinates.
Let us illustrate by means of a simple example why a Darboux k-presymplectic theorem

does not exist for general foliated k-presymplectic manifolds. It is worth noting that Darboux
coordinates for families of closed differential forms are, at the very last instance, a way of
writing them in a coordinate system so that their associated coordinates are constant. The
following theorem shows that this is impossible for general k-presymplectic manifolds.
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Theorem 3.11 Every rank-zero exact canonical foliated k-presymplectic structure is equiv-
alent to k exact differential two-forms on Q.

Proof An exact canonical foliated k-presymplectic manifold (S ⊂ ⊕k
α=1 T

∗Q, ω1
S, . . . , ω

k
S)

gives rise, as S is diffeomorphic to Q via π |S : S ⊂ ⊕k
α=1 T

∗Q → Q, to a unique family of
exact differential two-forms,ω1

Q, . . . , ωk
Q , on Q satisfying that π |∗Sω1

Q = ω1
S, . . . , π |∗Sωk

Q =
ωk
S .
Conversely, k exact presymplectic two-formsω1

Q, . . . , ωk
Q on Qwith potentials θ1, . . . , θk

give rise to a section S = {(q, θ1(q), . . . , θk(q)) | q ∈ Q} of π : ⊕k
α=1 T

∗Q → Q. Note
that

j∗
Sωα = −j∗

Sd(p
α
i dy

i ) = −dθα|S = π |∗Sωα
Q, α = 1, . . . , k.

Then,ω1
Q, . . . , ωk

Q are exact and equivalent to a rank-zero canonical foliated k-presymplectic
structure. ��
Since there is no way to put k arbitrary closed differential two-forms on Q into a coordinate
system so that all of them will have constant coefficients, there will be no general Darboux
theorem for foliated k-presymplectic manifolds, and thus there is no Darboux theorem for
k-presymplectic manifolds in general.

Theorem 3.11 can be considered as an extreme case of canonical foliated k-presymplectic
manifold. For the case of a fibration π |S : S → Q of rank one, it is simple to find new
examples where there will be no Darboux coordinates. Assume the simple case of a fibration
of rank one given by a submanifold S ⊂ ⊕2

α=1 T
∗
R
2 onto R2. Since S has dimension three,

the two differential forms ω1
S, ω

2
S can be assumed to have rank two and non-trivial common

intersection of their kernels. In such a case, they are proportional. One of them can always
be put into canonical form for certain variables, because is presymplectic. Since they are
proportional and due to the closeness condition, they depend only on two variables. Hence,
to put them in canonical form with some Darboux variables amounts to putting two different
volume forms on R2 in canonical form for the same Darboux variables, which is impossible.

Example 3.12 Let us describe in more detail a more complex example of a foliated 2-
presymplectic manifold that does not admit Darboux coordinates. Consider

⊕2
α=1 T

∗
R
2

and the fibration of the submanifold S onto R2 with rank one of the form

S = {(p(1)
1 (λ, y1, y2)dy1 + p(1)

2 (λ, y1, y2)dy2, p(2)
1 (λ, y1, y2)dy1 + p(2)

2 (λ, y1, y2)dy2)

: λ, y1, y2 ∈ R}.
In particular, consider

p(1)
1 = λ, p(1)

2 = 0, p(2)
1 = f (λ, y1), p(2)

2 = 0,

for a certain function f (λ, y1) such that ∂ f /∂λ is different from the constant functions
zero and one. Hence, ω1

S = dλ ∧ dy1 and ω2
S = ∂ f

∂λ
(λ, y1)dλ ∧ dy1, which are closed,

proportional, have rank-one kernel and cannot be put into a canonical form for canonical
coordinates because ω1

S, ω
2
S amount to two different volume forms on R

2.

There are several manners of defining a k-presymplectic manifold. The following one
offers a possibility.

Definition 3.13 Let M be an (n(k + 1) − m)-dimensional manifold, with 0 ≤ m ≤ nk. A
k-presymplectic structure on M is a family (ω1, . . . , ωk, V ), where V is an r -dimensional
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integrable distribution andω1, . . . , ωk are closed differential two-forms onM with rank ωα =
2rα and r = ∑k

α=1 rα , where 1 ≤ rα ≤ n, satisfying that

ωα
∣
∣
V×V = 0, α = 1, . . . , k.

AmanifoldM endowedwith a k-presymplectic structure is called a k-presymplecticmanifold.

Wewould expect to obtain for every k-presymplectic structure (M, ω1, . . . , ωk, V ), where
rank ωα = 2rα , with 1 ≤ rα ≤ n, and every x ∈ M a local coordinate system {yi , pα

i } around
x so that

ωα = dyi
α
j ∧ dpα

iαj
, α = 1, . . . , k,

for certain iαj ∈ {1, . . . , n} for j = 1, . . . , rα for every α = 1, . . . , k. Nevertheless, Example
3.12 represents a counterexample for the existence of Darboux coordinate system for k-
presymplectic structures.

Contrary to previous examples, we will give conditions ensuring that a k-presymplectic
manifold admits Darboux coordinates. Indeed, the manifold S is three-dimensional, while
k = 2. The associated presymplectic forms have rank two. The distribution V is then two-
dimensional and generated, for instance, by the vector fields 〈∂/∂λ, ∂/∂ y2〉. Then, n and m
can be fixed to be two and three.

It is worth noting that for a k-presymplectic structure on M , any Riemannian metric g
on M allows one to obtain a decomposition of a subspace E ⊂ Tx M as a direct sum of
subspaces

Eκ1,...,κk = E ∩
(

k⋂

α=1

(ker ωα
x )κα

)

, (7)

where κα ∈ {0, 1}, while (ker ωα
x )0 = ker ωα

x and (ker ωα
x )1 = (ker ωα

x )⊥g , where ⊥g is
the orthogonal relative to the introduced metric g. The main aim of this decomposition is to
divide Tx M into two subspaces, V , S, given by direct sums of the subspaces in (7) in such a
manner that ωα(V ) and ωα(S) have rank rα , while ωα(V )∩ωα(S) = 0 for α = 1, . . . , k. As
in the case of k-symplectic linear spaces, one can now prove a k-presymplectic linear space
Darboux theorem.

Lemma 3.14 (k-presymplectic linear Darboux theorem) Given a k-presymplectic structure
(ω1, . . . , ωk, V ) on M, where rank ωα = 2rα for α = 1, . . . , r . Let D = ⋂k

α=1 ker ω
α have

rank d and let rank V = r + d = ∑k
α=1 rα + d be so that

dim Vα = rα, V = D ⊕
k⊕

β=1

Vβ, D + Vα = V ∩
⎛

⎝
⋂

β �=α

ker ωβ

⎞

⎠ , (k �= 1) α = 1, . . . , k

(8)

and dim M = n + r + d. Then, at every T∗
x M, for x ∈ M, one can set a basis of the form

{e1, . . . , en; eα
μα

j
, v1, . . . , vd}, with μα

j ∈ Iα ⊂ {1, . . . , n} and |Iα| = rα with α = 1, . . . , k,

of T∗
x M such that

ωα
x =

rα∑

j=1

eμα
j ∧ eα

μα
j
, α = 1, . . . , k, Dx = 〈v1, . . . , vd 〉, Vαx =

〈

e
μα

j
α

〉

.
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Proof Note that dim M = n + r + d . Since D = ⋂k
α=1 ker ω

α has rank d , one has that

D◦
x = Imω1

x + · · · + Imωk
x , ∀x ∈ M, (9)

is such that rank D◦ = n + r . Since ωβ |V×V = 0, it follows that ωβ(V ) ⊂ V ◦ for every β.
We have

ω1(V ) + · · · + ωk(V ) ⊂ V ◦.

Note that rank V ◦ = n. From the second and third condition in (8), it follows that Vα ∩
ker ωα = 0. Moreover, one has that rank ωα(Vα) = rα = rank ωα(V ) for α = 1, . . . , k.
Consider the supplementary S = V⊥g to V . Then, rank V⊥g = dim M − r − d = n and
rank ω

β
x (Sx ) ≤ n for every x ∈ M . Due to (9) and the above, one has that

ω1(V⊥g ) + · · · + ωk(V⊥g )

is a distribution of rank r at least. By our decomposition, every α allows us to divide V⊥g

into two spaces in the form V⊥g = ϒα ⊕ (
ker ωα ∩ V⊥g

)
, where ϒα has rank rα because

ker ωα = n + r + d − 2rα and ker ωα ∩ V = r + d − rα . Then, ωα(V⊥g ) is equal to the
image of a subspace of rank rα of V⊥g and it therefore has rank rα and ωα(S) ∩ ωα(V ) = 0.
Then,

rank(ω1(V⊥g ) + · · · + ωk(V⊥g )) = r , ω1(V ) + · · · + ωk(V ) = V ◦. (10)

Note that ker ωα = n+d+r −2rα and ωα(V ) = ωα(Vα ⊕ (ker ωα ∩V )). Due to the second
expression in (10), the sum of the codistributions Sα∗ = ωα(V ) of T∗M for α = 1, . . . , k has
rank n, but they do not need to be in direct sum. A non-degenerate contravariant symmetric
tensor, g∗. on S∗ = S1∗ + · · · + Sk∗ can be used to give a decomposition of it into subspaces
in direct sum of the form

Sκ1,...,κk∗ =
k⋂

α=1

Sκα
α∗,

where κα ∈ {0, 1} for α = 1, . . . , k, while S1α∗ = Sα∗ and S0α = (Sα∗ )⊥g∗ , namely the
orthogonal in S∗ of Sα∗ relative to g∗. Take a basis of S∗ associated with our decomposition.
For the elements of such a basis spanning Sα∗ , there will be unique elements in Vα whose
image under ωα give minus the corresponding basis in Sα∗ . Take a supplementary to S∗ in
T∗M , of dimension d + r , dual to a basis adapted to the decomposition of V and vanishing
on V⊥g . It is worth noting that we have a decomposition

TM =
[
ϒα ⊕ (ker ωα ∩ V⊥g )

]
⊕
⎡

⎣Vα ⊕
⎛

⎝
⊕

β �=α

Vβ

⎞

⎠⊕ D

⎤

⎦

and a dual one in S∗ ⊕ (V⊥g )◦. In such a basis, the form of ωα goes back to (5) and the same
technique in Theorem 3.2 gives the canonical form for every ωα with α = 1, . . . , k. Finally,
if w1, . . . , wd is a basis of D dual to the one chosen in T∗

x M , one has that

ωβ =
rβ∑

j=1

eμ
β
j ∧ eβ

μ
β
j

, Vβ =
〈

e
μ

β
j

β

〉

, β = 1, . . . , k.

��
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As proved above, depending on their exact definition, k-presymplectic manifolds need not
have aDarboux theorem (whatever thismeans, becausewe can have differentways of defining
such an object). That is why we hereafter a definition of k-presymplectic manifold ensuring
the existence of a particular case of k-presymplectic Darboux theorem. This is done by
assuming the existence of certain integrable distribution with particular properties.

Definition 3.15 A k-presymplectic manifold (M, ω1, . . . , ωk, V ) is a k-presymplectic man-
ifold such that dim M = n + r + d where d = rank

⋂k
α=1 ker ω

α and rank ωα = 2rα , the
V is an integrable distribution such that ω|V×V = 0 of rank r + d and there are integrable
distributions

⊕k
α=1 Vα , V1, . . . , Vk, D so that

V =
k⊕

α=1

Vα ⊕ D, D =
k⋂

α=1

ker ωα, D + Vβ =
⋂

β �=α

ker ωα ∩ V (k �= 1), β = 1, . . . k.

Lemma 3.16 Given a k-presymplectic manifold (M, ω1, . . . , ωk, V ), the distributions V α ,
with α = 1, . . . , k, satisfy that every x ∈ M admits a coordinated neighbourhood with
coordinates

{y1, . . . , yn, z1, . . . , zd , yα
1 , . . . , yα

rα }, α = 1, . . . , k,

on a neighbourhood of x so that

Vα =
〈

∂

∂ yα
1

, . . . ,
∂

∂ yα
rα

〉

, α = 1, . . . , k, D =
〈

∂

∂z1
, . . . ,

∂

∂zd

〉

.

Proof Let y1, . . . , yn be common functionally independent first-integrals for all vector fields
taking values in V . Since D is a regular distribution of rank d given by the intersection of
kernels of the closed forms ω1, . . . , ωk , it is integrable. It is assumed that

⊕k
α=1 Vα is

integrable. Hence, V1 ⊕ . . .⊕Vk has common first-integrals z1, . . . , zd such that dz1 ∧ . . .∧
dzd ∧ dy1 ∧ . . . ∧ dyn �= 0. If k = 1, the result of our lemma easily follows. Assume that
k > 1. Given different integers α1, . . . , αk−1 ∈ {1, . . . , k}, one has that,

Vα1 ⊕ · · · ⊕ Vαk−1 ⊕ D = ker ωβ ∩ V ,

where β is the only number in {1, . . . , k} not included in {α1, . . . , αk−1}. Hence, the distri-
bution Vα1 ⊕ · · · ⊕ Vαk−1 ⊕ D has corank rβ , it is integrable, and the vector fields taking

values in it have rβ common local first-integrals yβ
1 , . . . , yβ

rβ such that

dz1 ∧ · · · ∧ dzd ∧ dyβ
1 ∧ · · · ∧ dyβ

rβ ∧ dy1 ∧ · · · ∧ dyn �= 0.

By construction, {y11 , . . . , y1r1 , . . . , yk1 , . . . , ykrk , z1, . . . , zd , y1, . . . , yn} becomes a local
coordinate system on M and

Vα =
(

d⋂

i=1

ker dzi
)

∩
(

n⋂

i=1

ker dyi
)

∩
⋂

β �=α
i=1,...,rβ

ker dyβ
i .

Moreover,
∂

∂ yβ
i

with i = 1, . . . , rβ vanish on all coordinates yα
j with α �= β and j =

1, . . . , rα . Hence,
〈

∂

∂ yβ
1

, . . . ,
∂

∂ yβ
rβ

〉

= Vβ, β = 1, . . . , k,
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and
〈

∂

∂z1
, . . . ,

∂

∂zd

〉

= D.

��
Once the above is proved, the following theorem is immediate. One only has to slightly
adapt Theorem 3.5 by considering that rank Vα = rα for α = 1, . . . , k and to restrict ωα

to the integral submanifolds of Vα ⊕ ϒα , which have dimension 2rα , where ωα becomes
symplectic.

Theorem 3.17 (k-presymplectic Darboux theorem) Let (M, ω1, . . . , ωk, V ) be a k-
presymplectic manifold such that rankωα = 2rα , with 1 ≤ rα ≤ n. The dimension of
M is n + r + d. For every point x ∈ M, there exist local coordinates {yi , yα

μα
j
, z j }, with

1 ≤ i ≤ n, μα
j ∈ Iα ⊆ {1, . . . , n}, |Iα| = rα , 1 ≤ j ≤ rα and 1 ≤ α ≤ k, such that

ωα =
rα∑

j=1

dyμα
j ∧ dyα

μα
j
, Vα =

〈
∂

∂ yα
μα

j

〉

, α = 1, . . . , k,
k⋂

α=1

ker ωα =
〈

∂

∂z j

〉

.

4 k-cosymplectic and k-precosymplectic manifolds

Similarly to previous sections, let us study k-cosymplectic and k-precosymplectic mani-
folds. Our investigation will introduce relevant technical issues to be addressed that were not
present in previous sections. One of its main differences with respect to previous Darboux
theorems relies on the fact that Reeb vector fields are not uniquely defined in the case of
k-precosymplectic manifolds. This suggests that Darboux coordinates for k-precosymplectic
manifolds should not assume a canonical form for the Reeb vector fields. Moreover, addi-
tional conditions will be needed to assume so as to obtain canonical bases for the distributions
after having the corresponding differential forms written in a canonical manner.

Definition 4.1 Let M be an (n(k+1)+k)-dimensional manifold. A k-cosymplectic structure
in M is a family (ηα, ωα, V ), with 1 ≤ α ≤ k, where η1, . . . , ηk are closed one-forms on
M , while ω1, . . . , ωk are closed two-forms in M , and V is an integrable nk-dimensional
integrable distribution in M satisfying that

(1) η1 ∧ · · · ∧ ηk �= 0 , ηα|V = 0, ωα|V×V = 0,
(2)

⋂k
α=1 (ker ηα ∩ ker ωα) = {0} , rank

⋂k
α=1 ker ω

α = k.

A manifold M endowed with a k-cosymplectic structure is said to be a k-cosymplectic
manifold.

Every k-cosymplectic structure (ηα, ωα, V ) in M admits a unique family of vector fields
R1, . . . , Rk on M , called Reeb vector fields, such that

ιRα ηβ = δβ
α , ιRα ωβ = 0, α, β = 1, . . . , k. (11)

Note that the existence of Reeb vector fields is independent of the existence or not of the
distribution V .

Given a one-cosymplectic manifold (M, η, ω, V ), the pair (η, ω) is a special type of
cosymplectic structure inM that additionally admits the distribution V . Not every cosymplec-
tic structure admits such a V . In fact, consider (M = R× S

2, η, ω), where η is the one-form
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on M obtained by pulling-back the one form dt on R, and ω is the pull-back to M of the
standard symplectic form on S2. Then, (M = R×S

2, η, ω) is not a one-cosymplectic mani-
fold because the standard symplectic form on S2 does not admit a distribution as commented
previously in this paper.

Theorem 4.2 (k-cosymplectic Darboux theorem) Given a k-cosymplectic manifold of the
form (M, η1, . . . , ηk, ω1, . . . , ωk, V ), every point x ∈ M admits a neighbourhood with
local coordinates {xα, yi , yα

i }, with 1 ≤ α ≤ k, 1 ≤ i ≤ n, such that

ηα = dxα, ωα =
n∑

i=1

dyi ∧ dyα
i , α = 1, . . . , k.

In these coordinates, Rα = ∂

∂xα
for α = 1, . . . , k. If k �= 1, then V =

〈
∂

∂ yα
i

〉

where

α = 1, . . . , k and i = 1, . . . , n. If k = 1 and [ker ω, V ] ⊂ ker ω ⊕ V , then V =
〈

∂

∂ yα
i

〉

.

Proof Since η1, . . . , ηk are closed and η1∧· · ·∧ηk does not vanish at any point ofM , one has
that H = ⋂k

α=1 ker η
α is an integrable distribution of corank k. Moreover, V is contained in

H by the definition of k-cosymplectic manifolds. Consider one of the integral leaves,S, of H ,
and the natural local immersion jS : S ↪→ M . The j∗

Sωα along with the restriction of V to S
give rise to a k-symplectic manifold since a vector field taking values in H that is orthogonal
to H relative to ω1, . . . , ωk belongs to

⋂k
α=1(ker η

α ∩ker ωα) = 0. Hence, j∗
Sω1, . . . , j∗

Sωk

admit k-symplectic Darboux coordinates. Doing the same along different leaves of H and
gluing the results, we obtain that ω1, . . . , ωk, η1, . . . , ηk have their canonical form. Let us
explain this in detail. The differential forms ω1, . . . , ωk, η1, . . . , ηk are invariant relative to
the Reeb vector fields of the k-cosymplectic manifold and their value in M can be understood
as the extension to M obtained from their value on S by the extension by one-parametric
groups of diffeomorphisms of the vector fields R1, . . . , Rk . Consider coordinates x1, . . . , xk

rectifying simultaneously the vector fields R1, . . . , Rk . If one consider the coordinate system
in M given by the coordinates xα, yi , yα

i on M , where yi , yα
i are invariant under the flows

of R1, . . . , Rk and match the k-symplectic Darboux coordinates on S, one gets that the xα

are functionally independent of the yi , yα
i . Moreover, since R1, . . . , Rk are in the kernels of

ω1, . . . , ωk and they are invariant relative to R1, . . . , Rk , it follows that their form onM is the
same as in S. Meanwhile, ηα = dxα for α = 1, . . . , k and the forms ω1, . . . , ωk, η1, . . . , ηk

on M take a canonical form.
To obtain a canonical basis of the distribution V , additional conditions must be added

for k = 1. On the other hand, if k > 1, then each distribution Vα is the intersection of the
kernels of ωβ for β �= α along with the intersection with

⋂k
β=1 ker η

β . They are therefore
invariant relative to the Reeb vector fields. So, they can be put in canonical form on S and
extended as previously from S to vector fields on M with a canonical form. On the other
hand, if k = 1, one has that V may not be the kernel of a closed form invariant relative to the
associated Reeb vector field and the previous method fails. To ensure this, one has to assume
[ker ω, V ] ⊂ ker ω ⊕ V . Equivalently, [R, V ] ⊂ V for the unique Reeb vector field of the
one-cosymplectic manifold. ��

The conditions given in [49, Lemma 5.1.1] and [21] for the Darboux theorem for k-
cosymplectic manifolds may be a little bit misleading since a necessary condition in the case
k = 1, namely V must be invariant relative to the action of the Reeb vector field, is not given
in [21, Theorem II.4] and [49, Lemma 5.1.1], but in [21, Remark II.5] or [49, Note 5.2.1],
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respectively, after them. Moreover, the above-mentioned condition in [21, 49, Lemma 5.1.1]
can be rewritten in a new way, namely [Rα, V ] ⊂ V , with α = 1, . . . , k, can be rewritten
by saying that the distributions ker ω and V are integrable and their direct sum is integrable.
This is also commented in [32].

As shown in the previous theorem, the condition [ker ω, V ] ⊂ V ⊕ ker ω is necessary in
order to ensure a canonical form for the elements of a basis of V . Notwithstanding, if one is
mainly concerned with the canonical form of the η1, . . . , ηk, ω1, . . . , ωk , this condition can
be avoided. This is the reason why we skipped [ker ω, V ] ⊂ V ⊕ ker ω in our definition of
k-cosymplectic manifolds.

Example 4.3 Let {x1, . . . , xk} be a linear coordinate system on R
k . Given the canonical

projections π̄1 : Rk × (T1
k)

∗Q → R
k , π̄2 : Rk × (T1

k)
∗Q → (T1

k)
∗Q, π̄0 : Rk × (T1

k)
∗Q →

R
k × Q. The canonical model for k-cosymplectic structures is

(Rk × (T1
k)

∗Q, (π̄1)
∗dxα, (π̄2)

∗ωα, V = ker(π̄0)∗),

where ω1, . . . , ωk are the two-forms of the canonical k-symplectic structure on (T1
k)

∗Q.

More generally, one has the following construction.

Example 4.4 Let (N ,�α,V) be an arbitrary k-symplectic manifold. Given the canonical
projections

πRk : Rk × N −→ R
k, πN : Rk × N −→ N

define the differential forms

ηα = π∗
Rk (dx

α), ωα = π∗
N�α, α = 1, . . . , k.

The distribution V in N defines a distribution V in M = R
k × N by considering the vector

fields on N as vector fields in M in the natural way via the isomorphism TM = TRk ⊕ TN .
All conditions given in Definition 4.1 are verified, and hence (M = R

k × N , ηα, ωα, V ) is
a k-cosymplectic manifold.

As in the case of k-presymplectic manifolds, there are many ways of defining a k-
precosymplectic structure. Note that in the k-precosymplectic case, one cannot, in general,
extend the notion of Reeb vector fields to give an object that is uniquely defined. Hence, one
maywonder about the necessity of putting them into a canonical form inDarboux coordinates,
since they are not unique. Taking this into account, let us give one of the possible definitions
for k-precosymplectic manifolds. No condition for the determination of the canonical form
of the Reeb vector fields will be assumed.

Definition 4.5 Let M be a manifold of dimension n(k + 1) + k − m, with 0 ≤ m ≤ nk. A
k-precosymplectic structure in M is a family (ηα, ωα, V ), with 1 ≤ α ≤ k, where ηα are
closed one-forms in M , while ωα are closed two-forms in M such that rank ωα = 2rα , with
1 ≤ rα ≤ n, and V is an integrable distribution in M of corank n + k satisfying that

1. η1 ∧ · · · ∧ ηk �= 0, ηα|V = 0, ωα|V×V = 0, α = 1, . . . , k,
2. rank

⋂k
α=1 ker ω

α = k + d,

3. rank
⋂k

α=1

(
ker ωα ∩ ker ηα

) = d,

4. one has that V is an integrable distribution admitting a decomposition into integrable

distributions V = ⊕k
α=1 Vα ⊕ D such that D + Vβ =

(⋂
β �=α ker ω

α
)

∩ V for β =
1, . . . , k and k �= 1 for dim Vβ = rβ .
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A manifold M endowed with a k-precosymplectic structure is called a k-precosymplectic
manifold. We hereafter define r = ∑k

α=1 rα .

Example 4.6 Consider a k-presymplectic manifold (P,�α, V ). Let us construct a k-
precosymplectic structure on Rk × P . First, consider the canonical projections

R
k × P

π−→ P, R
k × P

τ−→ R
k .

Then, define ηα = τ ∗dxα , where x1, . . . , xk are linear coordinates in R
k , and ωα = π∗�α

for α = 1, . . . , k. Then, (Rk × P, ηα, ωα) is a k-precosymplectic manifold.

Let us prove a technical result that is necessary to asses the role played by the distribution⋂k
α=1 ker η

α in k-precosymplectic manifolds.

Lemma 4.7 Given a k-precosymplectic manifold (M, η1, . . . , ηk, ω1, . . . , ωk, V ), every x ∈
M admits a coordinated neighbourhood with coordinates

{x1, . . . , xk, y1, . . . , yn, z1, . . . , zd , yα
1 , . . . , yα

rα }, α = 1, . . . , k,

on a neighbourhood of x so that

Vα =
〈

∂

∂ yα
1

, . . . ,
∂

∂ yα
rα

〉

, α = 1, . . . , k, D =
〈

∂

∂z1
, . . . ,

∂

∂zd

〉

.

Proof Since η1, . . . , ηk are closed, they admit potentials x1, . . . , xk , respectively. Let
y1, . . . , yn be common functionally independent first integrals for all vector fields taking
values in the integrable distribution V such that

dx1 ∧ · · · ∧ dxk ∧ dy1 ∧ · · · ∧ dyn �= 0.

It is assumed that
⊕k

α=1 Vα is integrable. Hence, V1 ⊕ · · · ⊕ Vk has common first integrals
z1, . . . , zd such that

μ = dx1 ∧ · · · ∧ dxk ∧ dz1 ∧ · · · ∧ dzd ∧ dy1 ∧ · · · ∧ dyn �= 0.

Given different integers α1, . . . , αk−1 ∈ {1, . . . , k}, and k > 1, one has that,

Vα1 ⊕ · · · ⊕ Vαk−1 ⊕ D = ker ωβ ∩ V ,

where β is the only number in {1, . . . , k} not included in {α1, . . . , αk−1}. Hence, the
distribution Vα1 ⊕ · · · ⊕ Vαk−1 ⊕ D has corank rβ in V , it is integrable, and the vec-

tor fields taking values in it have rβ common local first-integrals yβ
1 , . . . , yβ

rβ such that

dyβ
1 ∧ · · · ∧ dyβ

rβ ∧ μ �= 0. Note that, if k = 1, a similar result can be obtained by
considering V = V1 ⊕ D and some r1 functionally independent integrals of D. By
construction, {x1, . . . , xk, y11 , . . . , y1r1 , . . . , yk1 , . . . , ykrk , z1, . . . , zd , y1, . . . , yn} becomes a
local coordinate system on M and

Vα =
(

d⋂

i=1

ker dzi
)

∩
(

n⋂

i=1

ker dyi
)

∩
( ⋂

β �=α
i=1,...,rβ

ker dyβ
i

)

∩
( k⋂

β=1

ker dxβ

)

.

for k > 1. For k = 1, a similar expression is obtained by skipping the kernels of the

dy1i . Moreover,
∂

∂ yβ
i

with i = 1, . . . , rβ vanish on all coordinates yα
j , y

i , with α �= β and
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j = 1, . . . , rα , and the z1, . . . , zd . Hence,
〈

∂

∂ yβ
1

, . . . ,
∂

∂ yβ
rβ

〉

= Vβ, β = 1, . . . , k,

and
〈

∂

∂z1
, . . . ,

∂

∂zd

〉

= D.

��
The corresponding Darboux theorem for k-precosymplectic manifolds reads as follows.

Theorem 4.8 (k-precosymplecticDarbouxTheorem)Let M be a k-precosymplecticmanifold
such that dim M = n + d + r + k, while rank ωα = 2rα , with 1 ≤ rα ≤ n. Let us
assume the existence of k Reeb vector fields R1, . . . , Rk spanning an integrable k-dimensional
distribution and such that they commute among themselves. For every x ∈ M, there exists a
local chart of coordinates

{xα, yi , yα
μα

, z j }, 1 ≤ α ≤ k, 1 ≤ i ≤ n, μα ∈ Iα ⊆ {1, . . . , n}, |Iα | = rα, 1 ≤ j ≤ d,

such that

ηα = dxα, ωα =
∑

μα∈Iα
dyμα ∧ dyα

μα
α = 1, . . . , k.

If additionally [Ri , V ] ⊂ V , then

V =
〈

∂

∂ yα
μα

,
∂

∂z j

〉

,

k⋂

α=1

(ker ηα ∩ ker ωα) =
〈

∂

∂z j

〉

.

Proof Consider the distribution ϒ = ⋂k
α=1 ker η

α , which is integrable of rank n + d + r .
One can define a leaf Sλ of ϒ . Then, one has the immersion jλ : Sλ ↪→ M . Since V is
included in ϒ , one has that j∗

λω1, . . . , j∗
λωk allow us to define a k-presymplectic manifold

with Darboux coordinates for the ηα and the ωα which depend smoothly on λ. Note that the
ωα, ηα are invariant relative to some Reeb vector fields R1, . . . , Rk spanning an involutive
distribution and commuting among themselves. Using this fact and proceeding as in the
Darboux k-cosymplectic manifold structure, we obtain our Darboux coordinates for the ηα

and the ωα . Note that the same applies to the canonical basis for
⋂k

α=1(ker η
α ∩ker ωα) even

for k = 1.
Notwithstanding, the form of the basis for the distribution V needs the additional condition

about its invariance relative to R1, . . . , Rk . Then, gluing together as in Theorem 4.2, the result
follows.

��
Remark 4.9 Note that k-precosymplectic manifolds admit Reeb vector fields, but they are
not uniquely defined by conditions (11). One must impose some additional condition on M
to determine them uniquely. For instance, let us restrict ourselves to a k-precosymplectic
structure on R

k × M , where M is a k-presymplectic manifold. Then, if we ask the Reeb
vectors fields to be vertical with respect to the projection R

k × M → R
k , the system of

equations (11) determines univocally Reeb vector fields. An equivalent way of obtaining this
same family is taking the vector fields

{
∂

∂xα

}
on R

k and lifting them to R
k × M with the
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trivial connection dxα ⊗ ∂
∂xα . As it is obvious, in Darboux coordinates we have that these

vector fields are Rα = ∂
∂xα . Note that every k-presymplectic structure in this case will also

satisfy the conditions established in our Darboux theorem.

5 Multisymplectic and premultisymplectic structures

Let us now comment on certain results on Darboux coordinates for multisymplectic forms
[13, 29, 55]. First, let us detail some results on (pre)multisymplectic geometry (see [12, 13,
28] for further references).

In the context of (pre)multisymplectic geometry, the standard kernel of a differential form
is called the one-kernel. Recall that we assume differential forms to have constant rank.

Definition 5.1 Let M be an n-dimensional differentiable manifold. A closed form � ∈
�k(M) whose one-kernel is a distribution of constant rank is called a premultisymplectic
form. Additionally, if ιX � = 0 for a vector field X ∈ X(M) implies that X = 0, then �

is said to be one-nondegenerate and it becomes a multisymplectic form. The pair (M,�) is
said to be a premultisymplectic or a multisymplectic manifold of degree k, if the one-kernel
of � is one-degenerate or one-nondegenerate, respectively.

First examples of multisymplectic manifolds are symplectic manifolds, i.e. multisymplec-
tic manifolds of degree 2, and orientable manifolds, namely multisymplectic manifolds with
a volume form.

The following is a linear analogue of (pre)multisymplectic manifolds.

Definition 5.2 A k-covector � on R
n is called a premultisymplectic linear form. If ιv � =

0 for some x ∈ R
n implies that v = 0, then � is said to be one-nondegenerate and it

becomes a multisymplectic linear form or k-plectic linear form. The pair (Rn,�) is said to
be a premultisymplectic linear space or a linear multisymplectic linear space of degree k,
respectively. Multisymplectic linear spaces given by a k-covector are also called k-plectic
vector spaces.

Other typical examples of multisymplectic manifolds are given by the so-called bundles
of forms, which, in addition, are the canonical models of multisymplectic manifolds. These
canonical models are constructed as follows.

• Let Q be a manifold. Consider the bundle ρ : �k(T∗Q) → Q, i.e. the bundle of k-forms
in Q (also called the k-multicotangent bundle of Q). This bundle is endowed with a
canonical structure called the tautological or canonical form�Q ∈ �k(�k(T∗Q)) given
by

�Qμ̂ (V1, . . . , Vk) = ι(ρ∗V1 ∧ · · · ∧ ρ∗Vk)μ̂,

for every μ̂ ∈ �k(T∗Q) and V1, . . . , Vk ∈ Tμ̂(�k(T∗Q)). Then, �Q = d�Q ∈
�k+1(�k(T∗Q)) is a one-nondegenerate form and hence (�k(T∗Q),�Q) is a multi-
symplectic manifold of degree k + 1. Furthermore, denoting by {xi , pi1...ik } the charts of
natural coordinates in �k(T∗Q), these canonical forms read locally as

�Q = pi1...ikdx
i1 ∧ · · · ∧ dxik , �Q = dpi1...ik ∧ dxi1 ∧ · · · ∧ dxik .

Such coordinates are Darboux coordinates in �k(T∗Q).
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• If π : Q → M is a fibre bundle, let ρr : �k
r (T

∗Q) → Q be the subbundle of
�k(T∗Q) made of the r -horizontal k-forms in Q with respect to the projection π ,
namely the k-forms in Q vanishing when applied to r vector fields that in Q that
are π-vertical. If ρk

r : �k
r (T

∗Q) → �k(T∗Q) is the canonical injection, then �r
Q =

(ρk
r )∗�Q ∈ �k(�k

r (T
∗Q)) is the tautological k-form in �k

r (T
∗Q), and then, taking

�r
Q = d�r

Q ∈ �k+1(�k
r (T

∗Q)), we have that (�k
r (T

∗Q),�r
Q) is a multisymplectic

manifold of degree k+1. As above, the charts of natural coordinates in�k
r (T

∗Q) are also
charts of Darboux coordinates, on which these canonical forms have local expressions
similar to the above ones.

Nevertheless, in general, multisymplectic manifolds are not (locally) diffeomorphic to
these canonical models.

Note that a multisymplectic form with Darboux coordinates admits a local flat connection
compatiblewith it. Furthermore, if themultisymplectic formhas a compatible flat connection,
it admits coordinates in which the multisymplectic form has constant coordinates, but it does
not need to be of the previous form. In particular, if a multisymplectic form has kernels
of higher order to those of �Q , then there is no Darboux theorem in the above senses. In
particular, this is a typical problem for Darboux coordinates: differential forms can be put
into a form with constants coefficients in many manners and Darboux theorems use to stress
one particular form over others, although others may be of interest too.

In general, multisymplectic manifolds do not need to have a coordinate system that makes
themultisymplectic form to have constant coordinates, which is the verymost basic condition
for the existence of a Darboux theorem. Indeed, multisymplectic manifolds of this type are
called flat in the literature [55]. The exact definition is given next.

Definition 5.3 A multisymplectic manifold (M, ω) is called flat near x ∈ M , if there exists
a mapping φ : U ⊂ M → Tx M such that φ(x) = 0 and φ∗ωx = ω for ωx being a
constant-coefficient non-degenerate multilinear-form on Tx M .

Definition 5.4 An (n + 1)-plectic vector space (V , ω) is called standard if there exists a
linear subspace W ⊂ V such that ιu∧v ω = 0 for all u, v ∈ W , and

ω� : w ∈ W �→ ω�(w) ∈ �n(V /W )∗

such that ω�(w)(v1 + W , . . . , vn + W ) = ω(w, v1, . . . , vn) for every v1, . . . , vn ∈ V , is an
isomorphism.

In the above situation, W is unique if n ≥ 2 and then often denoted Wω. From [13, 47,
55], the following result can easily be derived.

Theorem 5.5 Let n ≥ 2 and let (M, ω) be a standard (n+1)-plectic manifold, i.e. (M, ω) has
as constant linear type fixed standard (n+1)-plectic vector space. Then,Wω = ⊔

x∈M Wωx ⊂
T M is a smooth distribution. Furthermore, (M, ω) is flat if and only if Wω is integrable.

Let us just recall that our definition of (n + 1)-plectic symplectic manifold is sometimes
called a n-plectic manifold in the literature [55].

Let us now turn to a type of multisymplectic manifold for which we will obtain Darboux
coordinates.

Definition 5.6 A special multisymplectic manifold is a multisymplectic manifold (M,�)

of degree k such that � = d�, for some � ∈ �k−1(M), and there is a diffeomorphism
φ : M → �k−1(T∗Q), dim Q = n ≥ k − 1, (or φ : M → �k−1

r (T∗Q)), and a fibration
π : M → Q such that ρ ◦ φ = π (resp. ρr ◦ φ = π ), and φ∗�Q = � (resp. φ∗�r

Q = �).
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And, as a result of the above discussion, we state the following result.

Theorem 5.7 (Restricted multisymplectic Darboux Theorem) Special multisymplectic man-
ifolds (M,�) are multisymplectomorphic to bundles of forms. Therefore, there is a local
chart of Darboux coordinates around every point x ∈ M.

Like in the k-symplectic and k-cosymplectic cases, some additional properties are needed
to assure the existence of Darboux-type coordinates [47] and then to have multisymplectic
manifolds that locally behave as the canonical models. To state these additional conditions,
we need to introduce some generalisations of concepts of symplectic geometry. So, if (M,�)

is a multisymplectic manifold of degree k andW a distribution on M , we define [13, 19] the
r-orthogonal multisymplectic vector space at p ∈ M of W as

W⊥,r
x = {v ∈ Tx M | ι(v ∧ w1 ∧ · · · ∧ wr )�p = 0, ∀w1, . . . , wr ∈ Wx }.

Then, the r -orthogonal multisymplectic complement of W is the distribution W⊥,r =⊔
x∈M W⊥,r

x , and we say that W is an r-coisotropic or an r -isotropic distribution if
W⊥,r ⊂ W or W ⊂ W⊥,r , respectively (if W = W⊥,r then W is an r-Lagrangian
distribution). Let us use previous notions.

Definition 5.8 Let (M,�) be a multisymplectic manifold of degree k, and letW be a regular
one-isotropic involutive distribution in (M,�).

1. Amultisymplecticmanifold of type (k, 0) is a triple (M,�,W) such that, for every x ∈ M ,

(a) dimW(x) = dim�k−1(Tx M/W(x))∗.
(b) dim(Tx M/W(x)) > k − 1.

2. A multisymplectic manifold of type (k, r) (1 ≤ r ≤ k − 1) is a quadruple (M,�,W, E),
where E is a distribution on M such that, for every x ∈ M , one has that E(x) is a vector
subspace of Tx M/W(x) satisfying the following properties:

(a) If πx : Tx M → Tx M/W(x) is the canonical projection, then ι(v1 ∧· · ·∧vr )�x = 0,
for every vi ∈ Tx M such that πx (vi ) ∈ E(x) (i = 1, . . . , r ).

(b) dimW(x) = dim�k−1
r (Tx M/W(x))∗, where the horizontal forms are considered

with respect to the subspace E(x).
(c) dim(Tx M/W(x)) > k − 1.

Then, the fundamental result is the following [19, Corollary 3.31].

Theorem 5.9 (Generalised multisymplectic Darboux Theorem) Every multisymplectic man-
ifold (M,�) of type (k, 0) (resp. of type (k, r)) is locally multisymplectomorphic to a bundle
of (k−1)-forms�k−1(T∗Q) (resp.�k−1

r (T∗Q)), for somemanifold Q; that is, to a canonical
multisymplectic manifold. Therefore, there is a local chart of Darboux coordinates around
every point x ∈ M.

Definition 5.10 Multisymplectic manifolds that are locally multisymplectomorphic to bun-
dles of forms are called locally special multisymplectic manifolds.

As a relevant example, if π : E → M is a fiber bundle (where M is an m-dimensional
oriented manifold), J 1π is the corresponding first-order jet bundle, and L is a first-order reg-
ular or hyperregular Lagrangian density, then the Poincaré–Cartan form �L ∈ �m+1(J 1π)

is a multisymplectic form and (J 1π,�L) is a (locally) special multisymplectic manifold. If
L is a singular Lagrangian, then (J 1π,�L) is a premultisymplectic manifold.

123



On Darboux theorems for geometric structures induced... Page 31 of 35   131 

Definition 5.11 A special premultisymplectic manifold is a premultisymplectic manifold
(M,�) of degree k such that M/ ker� is a manifold and the unique multisymplectic form
�′ on M/ ker� such that π∗�′ = � is a special multisymplectic form.

The following naturally follows.

Definition 5.12 Let (M,�) be a premultisymplectic manifold of degree k, and W a regular
one-isotropic involutive distribution in (M,�) such that ker� ⊂ W and d = dim ker�.

1. A premultisymplectic manifold of type (d, k, 0) is a triple (M,�,W) such that, for every
x ∈ M ,

(a) dimW(x) − d = dim�k−1(Tx M/W(x))∗.
(b) dim(Tx M/W(x)) > k − 1.

2. A premultisymplectic manifold of type (d, k, r) (1 ≤ r ≤ k − 1) is a quadruple
(M,�,W, E), where E is a distribution on M such that, for every x ∈ M , the space
E(x) is a vector subspace of Tx M/W(x) with the following properties:

(a) If πx : Tx M → Tx M/W(x) is the canonical projection, then ι(v1∧· · ·∧vr )�p = 0,
for every vi ∈ Tx M such that πx (vi ) ∈ E(x), i = 1, . . . , r .

(b) dimW(x)−d = dim�k−1
r (Tx M/W(x))∗,where the horizontal forms are considered

with respect to the subspace E(x).
(c) dim(Tx M/W(x)) > k − 1.

Theorem 5.13 (Generalised premultisymplectic Darboux Theorem) Every premultisymplec-
tic manifold (M,�) of type (d, k, 0) (resp. of type (d, k, r)) is locally premultisymplecto-
morphic to a canonical premultisymplectic manifold of type (d, k, 0) (resp. of type (d, k, r)).
Therefore, there is a local chart of Darboux coordinates around every point x ∈ M.

As in previous structures, analogous claims can be done concerning the existence of
connected compatible connections with premultisymplectic manifolds.

6 Conclusions and outlook

The focus of this research is the exploration of Darboux-type theorems concerning geomet-
ric structures defined by closed differential forms. The initial section of this study entails
an examination of the Darboux theorem for symplectic, presymplectic, and cosymplectic
manifolds. By imposing minimal regularity conditions, we have successfully established a
proof for a Darboux theorem applicable to precosymplectic manifolds. Within the realm of
geometric mechanics, these manifolds serve as the phase spaces for both regular and singular
autonomous and non-autonomous dynamical systems.

We have presented novel proofs for the Darboux theorem concerning k-symplectic and
k-cosymplectic manifolds. These proofs appear to be simpler compared to the previously
known ones. Additionally, we have introduced and demonstrated new Darboux theorems
for specific families of k-presymplectic and k-precosymplectic manifolds. Furthermore, we
have provided a counterexample illustrating that a general Darboux-type theorem does not
hold for k-presymplectic manifolds. We have conducted a thorough review of previous find-
ings regarding the existence of Darboux coordinates for certain types of multisymplectic
manifolds. Lastly, we have presented fresh results that establish the existence of Darboux
coordinates for particular cases of premultisymplectic manifolds. All of these structures play
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a vital role in the geometric representation of both regular and singular classical field theories.
The relations of Darboux theorems with flat connections have been studied, which provides
new viewpoints and gathers previous scattered results in the literature.

The ideas of this paper can be extended to other geometric structures related with closed
one or two-forms of different types. Notwithstanding, the formalism on flat compatible con-
nections does not apply to geometric structures related to families of different forms that
do not allow for a locally constant form and therefore closed, e.g. for contact and precon-
tact structures, and their extensions (which appear, for instance, in the geometric description
of dissipative and action-dependent systems in physics). It would be interesting to find an
analogue of our formalism for such theories. In particular, note that non-closed differen-
tial forms may have flat compatible connections provided non-zero torsion is allowed. For
instance, consider the manifold M = R

3 with natural coordinates {t, x, p}, the one-form
η = dt − pdx and the connection ∇ in M whose only non-vanishing Christoffel symbol is
�t
px = −1. It is easy to check that η is a contact one-form on M , and parallel relative to the

connection ∇, namely ∇η = 0. However, the connection ∇ is not torsion-free: its torsion

has local expression T = dx ⊗ dp ⊗ ∂

∂t
− dp ⊗ dx ⊗ ∂

∂t
. This torsion takes account of the

non-integrability of the contact distribution D = ker η. Meanwhile, ∇ is flat. The relation
between integrability of a geometric structure and the torsion of compatible connections will
be investigated in a future work.

Moreover, this work has studied conditions for Darboux theorems of various types. We
believe that there is still room to provide more types of Darboux coordinates, and that more
research in the study of necessary and sufficient conditions for their existence is needed. In
particular, this especially applies to k-pre(co)symplectic manifolds.
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