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Abstract
A Lie system is a time-dependent system of differential equations describing
the integral curves of a time-dependent vector field that can be considered
as a curve in a finite-dimensional Lie algebra of vector fields V. We call V
a Vessiot–Guldberg Lie algebra. We define and analyse contact Lie systems,
namely Lie systems admitting a Vessiot–Guldberg Lie algebra of Hamiltonian
vector fields relative to a contact manifold. We also study contact Lie systems
of Liouville type, which are invariant relative to the flow of a Reeb vector
field. Liouville theorems, contact Marsden–Weinstein reductions, and Gromov
non-squeezing theorems are developed and applied to contact Lie systems.
Contact Lie systems on three-dimensional Lie groups with Vessiot–Guldberg
Lie algebras of right-invariant vector fields and associated with left-invariant
contact forms are classified. Our results are illustrated with examples hav-
ing relevant physical and mathematical applications, e.g. Schwarz equations,
Brockett systems, quantum mechanical systems, etc. Finally, a Poisson coal-
gebra method to derive superposition rules for contact Lie systems of Liouville
type is developed.
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1. Introduction

A Lie system is a time-dependent system of first-order ordinary differential equations whose
general solution can be expressed as a time-independent function, a superposition rule,
depending on a generic finite family of particular solutions and some constants to be related
to initial conditions [17, 19, 82].

The Lie theorem states that a Lie system is equivalent to a time-dependent vector field
that can be considered as a curve in a finite-dimensional Lie algebra of vector fields, a so-
called Vessiot–Guldberg Lie algebra (VG Lie algebra, hereafter). Despite that being a Lie
system is more the exception than the rule, Lie systems appear in many relevant mathem-
atical and physical applications, which strongly motivates their analysis. For instance, [17]
contains around 240 references about Lie systems and related topics. It is worth stressing the
relevance of the research on Lie systems accomplished by Winternitz and his collaborators
in the Centre de Recherches Mathématiques in the University of Montréal (Canada), the so-
called CRM School (see [34] and references therein). Examples of Lie systems are Riccati
equations and most of their generalisations [17, 51, 82]. Lie systems also appear in the study
ofWinternitz–Smorodinsky oscillators [12], Milne–Pinney equations [12], Kummer–Schwarz
equations [17], projective Schrödinger equations [21], Bäcklund transformations and systems
of partial differential equations (PDEs) [63], conditional symmetries [53], superequations [9],
et cetera (see [17, 34] and references therein).

Different types of differential geometric structures, e.g. symplectic or Dirac ones, allow one
to attach a certain function, a so-called Hamiltonian, to a vector field. Such vector fields are
said to be Hamiltonian with respect to the geometric structure used to define them [2, 34]. At
first, Lie systems admitting aVGLie algebra of Hamiltonian vector fields relative to symplectic
or Poisson manifolds, the so-called Lie–Hamilton systems, were analysed [18]. New power-
ful geometric techniques were applied to Lie–Hamilton systems, e.g. the Poisson coalgebra
method to derive superposition rules [7]. Unfortunately, [23] provides a no-go theorem show-
ing that not every Lie system is a Lie–Hamilton one. This suggested the analysis of Lie systems
with VG Lie algebras of Hamiltonian vector fields relative to new geometric manifolds [34].
Nowadays, this has originated the study of Lie systems with VG Lie algebras of Hamiltonian
vector fields relative to different types of geometric structures and their related problems. This
also led to new theoretical results in differential geometry [35, 54]. In particular, [6, 7, 18, 19,
21, 39] analyse Lie–Hamilton systems (see [18] for Lie–Hamilton systems relative to a sym-
plectic form). Dirac–Lie systems are Lie systems admitting a VG Lie algebra of Hamiltonian
vector fields relative to a Dirac structure. This allows one to use Dirac geometry to study
Dirac–Lie systems. Additionally, k-symplectic Lie systems, i.e. Lie systems admitting a VG
Lie algebra of Hamiltonian vector fields relative to a k-symplectic manifold, were analysed
in [35]. It was proved in [35] that k-symplectic manifolds allow for defining certain Poisson
algebras of functions. These Poisson algebras enable us to study of integrable systems and
superposition rules more efficiently than previous methods. Meanwhile, multisymplectic Lie
systems, along with a particular type of multisymplectic reduction, were studied in [52, 54].
Relevantly, the development of a general multisymplectic reduction has been an open problem
for several decades now [11, 37]. The works [35, 54] show how Lie systems lead to interesting
advances in pure differential geometry too.

It is interesting that finding Lie systems with VG Lie algebras of Hamiltonian vector fields
relative to a geometric structure has led to many more new applications than mere Lie sys-
tems, which satisfy less restrictive conditions [7, 12, 21, 34]. It is remarkable that geometric
structures allow for the construction of superposition rules, constants of motion, and the ana-
lysis of relevant properties of Lie systems without relying on the analysis/solution of systems
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of partial or ordinary differential equations as the most classical and old methods [19, 20, 82],
which may extraordinarily simplify the study of Lie systems [34]. Geometric techniques also
provide new viewpoints to the nature and properties of superposition rules [7] and mathemat-
ical/physical problems [21, 59].

In recent years, the interest in dissipative systems has grown significantly. In part, this
is due to the incorporation of contact geometry [8, 45, 57] to the study of non-conservative
Lagrangian and Hamiltonian mechanical systems [13, 15, 29, 31, 41]. A contact form is a
non-vanishing differential one-form, η, whose differential, dη, is such that dη|kerη×kerη ̸= 0 is
non-degenerate. Contact forms, in particular, and contact geometry, in general, have proved to
be very useful in many different problems in areas such as thermodynamics [14, 75], circuit
theory [46], non-holonomic systems [28], quantum mechanics [24], gravitation and general
relativity [44, 65], control theory [66], among others [32, 57, 77]. Moreover, contact geometry
has drawn, by itself, much attention in recent times [47–49]. Recently, the notion of cocontact
manifold has also been developed to introduce explicit dependence on time [25, 43, 70].

In this context, this work investigates Lie systems possessing a VG Lie algebra of
Hamiltonian vector fields relative to a contact form [29], the referred to as contact Lie sys-
tems. Contact Lie systems can be considered as a particular case of Jacobi–Lie systems (see
[4, 5, 56]), which were first introduced in [56]. Nevertheless, [56] just contained one non-trivial
example of Jacobi–Lie system giving rise to a contact Lie system, and it did not analyse the
properties that are characteristic for contact Lie systems. In fact, [56] was mostly dealing with
Jacobi–Lie systems on one- and two-dimensional manifolds, which do not retrieve contact Lie
systems. Although we prove here that contact Lie systems can be analysed via Lie systems
with other compatible geometric structures, we show that contact geometry is the appropriate
setting to analyse contact Lie systems and their natural features: associated volume forms or
reductions.

As a particular case, this work analyses the hereafter called contact Lie systems of Liouville
type, namely contact Lie systems that are invariant relative to the Reeb vector field of their
associated contact manifolds. For these systems, we introduce certain Liouville theorems and
Gromov non-squeezing theorems, whose application can be considered as pioneering in the
literature of Lie systems (see [34, 54]). Moreover, it is remarkable that the literature on con-
tact Hamiltonian systems is mostly focused on dissipative systems [14, 15, 24, 26, 29, 41].
Meanwhile, this work also treats contact Hamiltonian systems not related to dissipation while
having physical applications, which fulfils a gap in the literature.

Willett’s reduction of contact manifolds [81] is here applied to the reduction of contact Lie
systems. This is more general than some other reductions appearing in the literature [30]. As
far as we know, types of Marsden–Weinstein reductions have only been applied to Lie systems
in [54] for multisymplectic Lie systems.

Although contact Lie systems are naturally related to Lie–Hamilton Lie systems on sym-
plectic manifolds of larger dimension, this relation is shown to have no practical applications to
our purposes. This fact can be illustrated via our classification of automorphic Lie systems (see
[34] for a definition) on three-dimensional Lie groups with a non-abelian VG Lie algebra of
right-invariant vector fields and related to left-invariant contact forms. Note that automorphic
Lie systems are relevant as the solution of every Lie system can be obtained via a particular
solution of an automorphic Lie system and the integration of a VG Lie algebra to a Lie group
action [17, 19].

Finally, an adaptation of the coalgebra method to obtain superposition rules, which was
firstly aimed at Lie–Hamilton and Dirac–Lie systems [18, 23], has been devised for a class of
Jacobi–Lie systems, and indirectly, for contact Lie systems of Liouville type. To illustrate our
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methods, an application to derive a superposition rule for an automorphic Lie system on the
Lie group SL(2,R) has been developed.

The structure of the work goes as follows. In section 2, a review on contact geometry
and contact Hamiltonian systems is provided and Willet’s reduction on contact manifolds is
sketched. Section 3 is the theoretical core of the article, introducing the notion of contact Lie
system and of contact Lie system of Liouville type. Moreover, a Gromov’s non-squeezing
theorem for contact Lie systems of Liouville type is stated and proved. In section 3.1, we ana-
lyse the existence of underlying geometric structures for contact Lie systems and why contact
geometry is more appropriate to analyse them. Section 4 classifies a class of contact auto-
morphic Lie systems on three-dimensional Lie groups with a non-abelian Lie algebra and a
left-invariant associated contact form. Section 5 is devoted to presenting four examples: the
Brockett control system, the Schwarz equation, a family of quantum contact Lie systems, and a
contact Lie system that is not of Liouville type. In particular, an example of contact Marsden–
Weinstein reduction of contact Lie systems is discussed. Finally, section 6 devises a coalgebra
method for obtaining superposition rules for a class of Jacobi–Lie systems, which gives, in par-
ticular, techniques to obtain superposition rules for contact Lie systems of Liouville type. As
an application, the superposition rule for an automorphic Lie system on SL(2,R) is retrieved.

2. Review on contact mechanics

From now on, all manifolds and mappings are assumed to be smooth and connected, unless
otherwise stated. This will simplify our presentation while stressing its main points. The space
of vector fields on a manifold M is denoted by X(M), while Ωs(M) stands for the space of
differential s-forms on M. Einstein notation will be hereafter used. Moreover, n will stand for
a natural number, namely n ∈ {1,2,3, . . .}.

2.1. Contact Hamiltonian systems

Let us provide a brief introduction to contact geometry (see [8, 45, 57] for details). Let us
recall that a distribution D of corank one on M is maximally non-integrable if every mapping
ρx :Dx×Dx ∋ (v,w) %→ [Xv,Yw]x+Dx ∈ TxM/Dx, with x ∈M, where Xv,Yw are any vector
fields on M such that Xv

x = v,Ywx = w, is a surjection. Note that for D to be non-integrable,
it is enough to ensure that there exist two vector fields X,Y on M taking values in D so that
[X,Y] does not take values inD. Nevertheless, to say thatD is maximally non-integrable, every
x ∈M has to be related to some X,Y taking values in D, and whose election may depend on
the point x, so that [X,Y]x does not belong to Dx.

A contact manifold is a pair (M,ξ) such that M is a (2n+ 1)-dimensional manifold M and
ξ is a corank one maximally non-integrable distribution onM. We call ξ a contact distribution
onM. Note that ξ can locally be, on an open neighbourhood U of each point x ∈M, described
as the kernel of a one-form η ∈ Ω1(U) such that η ∧ (dη)n is a volume form on U. Note that
if ξ were a non-integrable distribution but not a contact distribution, then one would just have
that ηx ∧ (dη)nx ̸= 0 at some point x ∈M, but η ∧ (dη)n would not be a volume form.

A co-orientable contact manifold is a pair (M,η), where η is a one-form on M such that
(M,kerη) is a contact manifold. Then, η is called a contact form. Since this work focus on local
properties of contact manifolds and related structures, we will hereafter restrict ourselves to
co-oriented contact manifolds. To simplify the terminology, co-oriented contact manifolds will
be called contact manifolds as in the standard modern literature on contact geometry [13, 29,
41]. Moreover, if not otherwise stated, (M,η) will hereafter stand for a contact manifold.
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Note that if η is a contact form on M, then fη is also a contact form on M for every non-
vanishing function f ∈ C∞(M).Moreover, a one-form η onM is such that η ∧ (dη)n is a volume
form on M if and only if η induces a decomposition of the tangent bundle to M of the form
TM= kerη⊕ kerdη. Recall that we assume dimM= 2n+ 1> 1.

A contact manifold (M,η) determines a unique vector field R ∈ X(M), called the Reeb vec-
tor field, such that ιRdη = 0 and ιRη = 1. Then, LRη = 0 and, therefore, LRdη = 0.

Theorem 2.1 (Darboux theorem). Given a contact manifold (M,η) with dimM= 2n+ 1,
around every point x ∈M there exist local coordinates {qi,pi,s}, with i = 1, . . . ,n, called
Darboux coordinates, such that

η = ds− pidqi .

In these coordinates, R= ∂/∂s.

A proof of the Darboux theorem for contact manifolds can be found in [1, 60].

Example 2.2 (Canonical contact manifold). Consider the product manifold M= T∗Q×R,
where Q is any manifold. The cotangent bundle T∗Q admits an adapted coordinate system
{q1, . . . ,qn,p1, . . . ,pn} and R has a natural coordinate s, which in turn give rise to a coordinate
system {q1, . . . ,qn,p1, . . . ,pn,s} on T∗Q×R. Then η = ds− θ, where θ is the pull-back of the
Liouville one-form θ◦ ∈ Ω1(T∗Q) relative to the canonical projection T∗Q×R→ T∗Q, is a
contact form on M. In the chosen coordinates,

η = ds− pidqi , R=
∂

∂s
.

The coordinates {qi,pi,s} are Darboux coordinates onM. It is remarkable that θ◦, and thus η,
are independent of the coordinates {q1, . . . ,qn}. △

Example 2.2 is a particular case of contactification of an exact symplectic manifold.
Consider an exact symplectic manifold (N,ω), namely a symplectic manifold whose sym-
plectic form, ω, is exact, i.e. ω =−dθ for a differential one-form θ ∈ Ω1(N). Then, the product
manifold M= N×R is a contact manifold with the contact form η = ds− θ, where the vari-
able s stands for the canonical coordinate in R understood as a variable in M in the natural
manner.

Let (M,η) be a contact manifold. There exists a vector bundle isomorphism ♭ : TM→ T∗M
given by

♭(v) = ιv(dη)x+(ιvηx)ηx , ∀v ∈ TxM, ∀x ∈M .

This isomorphism can be extended to a C∞(M)-module isomorphism ♭ : X(M)→ Ω1(M) in
the natural way. It is usual to denote both isomorphisms, of vector bundles and of C∞(M)-
modules, by ♭ as this does not lead to any misunderstanding, and the inverse of ♭ is denoted by
♯= ♭−1. Taking into account this isomorphism, R= ♯(η).

A contact Hamiltonian system [15, 29, 41] is a triple (M,η,h), where (M,η) is a contact
manifold and h ∈ C∞(M). If Rh= 0, then h is called a good Hamiltonian function [34]. Given
a contact Hamiltonian system (M,η,h), there exists a unique vector field Xh ∈ X(M), called the
contact Hamiltonian vector field of h, satisfying any of the following equivalent conditions:
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(1) ιXhdη = dh− (LRh)η and ιXhη =−h,
(2) LXhη =−(LRh)η and ιXhη =−h,
(3) ♭(Xh) = dh− (LRh+ h)η.

A vector field X ∈ X(M) is said to be Hamiltonian relative to the contact form η if it
is the Hamiltonian vector field of a function h ∈ C∞(M). Let Xham(M) stand for the space
of Hamiltonian vector fields relative to (M,η). Unlike the case of symplectic mechanics,
a Hamiltonian function h may not be preserved along the integral curves of the contact
Hamiltonian vector field Xh (see [41, 61] for details). More precisely,

LXhh=−(LRh)h .

A function f ∈ C∞(M) such that LXh f =−(LR f)f is called a dissipated quantity [41]. In
Darboux coordinates, the contact Hamiltonian vector field Xh reads

Xh =
∂h
∂pi

∂

∂qi
−
(
∂h
∂qi

+ pi
∂h
∂s

)
∂

∂pi
+

(
pi
∂h
∂pi

− h
)

∂

∂s
. (2.1)

Its integral curves, let us say γ(t) = (qi(t),pi(t),s(t)), satisfy the system of differential
equations

dqi

dt
=

∂h
∂pi

,
dpi
dt

=−
(
∂h
∂qi

+ pi
∂h
∂s

)
,

ds
dt

= pj
∂h
∂pj

− h , i = 1, . . . ,n .

Example 2.3. Consider the contact Hamiltonian system (T∗Rn×R,η,h), whereRn has global
linear coordinates {q1, . . . ,qn}, while η = ds− pidqi, and

h=
p2

2m
+V(q)+ γs ,

where m is the mass of a particle, p=
√
p21 + · · ·+ p2n, γ ∈ R, and V(q) is a potential. The

Hamiltonian function h describes a mechanical system consisting of a particle under the influ-
ence of a potential V(q) and with a friction force proportional to the momenta. The integral
curves of the contact Hamiltonian vector field, Xh, satisfy the system of equations

dqi

dt
=
pi
m
,

dpi
dt

=− ∂V
∂qi

(q)− γpi ,
ds
dt

=
p2

2m
−V(q)− γs , i = 1, . . . ,n .

Combining the first two equations, one gets

m
d2qi

dt2
+ γm

dqi

dt
+

∂V
∂qi

(q) = 0 , i = 1, . . . ,n .

Finally, let us recall that a contact manifold (M,η) gives rise to a Lie bracket [29]

{f,g}= Xfg+ gRf =−dη(Xf,Xg)− fRg+ gRf , ∀f,g ∈ C∞(M) . (2.2)

It can be proved that the map f ∈ C∞(M) %→ Xf ∈ Xham(M) is a Lie algebra isomorphism.
Using (2.1), one can prove that

{f,gh}= h{f,g}+ g{f,h}+ ghRf , ∀f,g,h ∈ C∞(M) .

Hence, (2.2) is a Poisson bracket if and only if R= 0. Thus, contact manifolds are Jacobi man-
ifolds but not Poisson ones. Nevertheless, if C∞

g (M) stands for the space of good Hamiltonian
functions, the restriction of {·, ·} to C∞

g (M) becomes a Poisson bracket. In particular, since R
is the Hamiltonian vector field of the constant function −1, it follows from the Jacobi identity
for {·, ·} that the Lie bracket of two good Hamiltonian functions is a good one.
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The formalism presented in this section has a Lagrangian counterpart [41, 68]. In addition, a
geometric formulation for time-dependent contact systems developing the so-called cocontact
geometry has been introduced in [25, 70].

2.2. Contact manifolds and other geometric structures

Let us study several geometric structures used to describe particular aspects of contact mani-
folds. In particular, we will also show why, although contact manifolds can be described via
some other structures, such approaches are not appropriate for our purposes in this work.

Definition 2.4. A Jacobi manifold is a triple (M,Λ,E), where Λ is a bivector field onM, i.e. a
skew-symmetric 2-contravariant tensor field, and E is a vector field on M, such that

[Λ,Λ] = 2E∧Λ , LEΛ= [E,Λ] = 0 ,

where [·, ·] denotes the Schouten–Nijenhuis bracket in its original sign convention3 [62, 71,
79].

Remark 2.5. Poissonmanifolds are equivalent to Jacobi manifolds withE= 0. In turn, Poisson
manifolds retrieve, as particular cases, symplectic and cosymplectic manifolds [16, 79].

Every bivector field Λ on M induces a vector bundle morphism Λ♯ : T∗M→ TM given by
Λ♯(ϑx) = Λx(ϑx, ·) for every ϑx ∈ T∗

xM and x ∈M.
A Hamiltonian vector field relative to (M,Λ,E) is a vector field X on M of the form

X= Λ♯(df)+ fE ,

for a function f ∈ C∞(M), which is called aHamiltonian function of X. It can be proved that if
Ex /∈ ImΛ♯

x at every point x ∈M, then each Hamiltonian vector field has a unique Hamiltonian
function. Additionally, X is called a good Hamiltonian vector field if it admits a Hamiltonian
function f satisfying Ef = 0.

The characteristic distribution of (M,Λ,E) is the distribution [79] on M of the form

Cx = ImΛ♯
x+ ⟨Ex⟩, ∀x ∈M .

Note that C need not have constant rank but it is integrable. The restriction of Λ to an even-
dimensional maximal integral submanifold of C gives rise to a locally conformally symplectic
form, while the restriction to an odd-dimensional maximal integral submanifold of C gives
rise to a contact manifold [79]. Recall that a contact manifold (M,η) with Reeb vector field R
gives rise to a Jacobimanifold (M,Λ,−R), whereΛ is the bivector field such thatΛ♯(α) = ♯α−
(ιRα)R for everyα ∈ T∗M for the isomorphism ♯= ♭−1 : T∗M→ TM (see [29, 41]).Moreover,
every Jacobi manifold (M,Λ,E) gives rise to a Jacobi bracket given by

{f,g}= Λ(df,dg)+ fEg− gEf , ∀f,g ∈ C∞(M) .

This bracket is not a Poisson bracket in general. Moreover, {·, ·} becomes a Poisson bracket
when restricted to the space of good Hamiltonian functions, C∞

g (M), of the Jacobi manifold
(M,Λ,E).

In particular, the Jacobi bracket satisfies

{f,g}= Xfg− gEf ,

3 There exists a modern, and sometimes more appropriate, definition of the Schouten–Nijenhuis bracket that differs
from ours on a global proportional sign depending on the degree ofΛ (see example 2.20 in [50] and references therein).
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and it matches the definition of the Lie bracket for contact manifolds when (M,η) is
such that

Λ(df,dg) =−dη(Λ♯(df),Λ♯(dg)) , E=−R .
The space Xham(M) of Hamiltonian vector fields in a Jacobi manifold is a Lie algebra with
respect to the Lie bracket of vector fields. More precisely, if Xf,Xg ∈ X(M) are the Hamiltonian
vector fields related to two arbitrary functions f,g ∈ C∞(M) respectively, one has

[Xf,Xg] = X{f,g} .

2.3. Reduction of contact manifolds

Let us describe the contact Marsden–Weinstein reduction theory [81]. We will highlight some
unexpected facts about momentum mappings for contact manifolds, which make them special
and it will have important consequences hereafter.

Definition 2.6. Let Φ : G×M→M be a Lie group action preserving the contact form of
(M,η), i.e. Φ∗

gη = η for every g ∈ G. We call Φ a contact Lie group action. A contact
momentum map associated with Φ is a map J : M→ g∗ defined by

⟨J(x),ξ⟩= ιξ̃xηx , ∀x ∈M ,

where ξ̃ ∈ X(M) is the fundamental vector field4 corresponding to ξ ∈ g.

Note that a contact Lie group action has a uniquemomentummap. In contrast to momentum
maps in symplectic manifolds [2], the contact momentum map is always Ad-equivariant,
where Ad refers to the adjoint action Ad : G× g→ g of a Lie group G on its Lie algebra g.
In other words, J ◦Φg = AdTg−1J for every g ∈ G [45]. The momentum map J gives rise to a
comomentum map λ : ξ ∈ g %→ Jξ ∈ C∞(M) defined by Jξ(x) = ⟨J(x),ξ⟩ for every x ∈M.

Proposition 2.7 (See [81, proposition. 3.1] for details). Let Φ : G×M→M be a proper
contact Lie group action relative to (M,η). Consider its associated contact momentum map
J : M→ g∗. Then,

(1) The level sets of the momentum map J are invariant under the action of the flow of the Reeb
vector field of (M,η).

(2) For every x ∈M, v ∈ TxM, and ξ ∈ g, one has

dJξ =−ιξ̃dη .

(3) If J(x) = 0, we have that T(G · x) is an isotropic subspace of the symplectic vector space
(kerηx,dxη|kerηx).

(4) (ImTxJ)◦ = {ξ ∈ g | ξ̃x ∈ kerdxη}.

Note that the fundamental vector fields of a contact Lie group action have Hamiltonian
functions that are first integrals of the Reeb vector field. This fact is relevant to prove the
following proposition.

4 We define the fundamental vector field of Φ : G×M→M associated with ξ ∈ g as

ξM(x) =
d
dt

∣∣∣∣
t=0

Φ(exp(tξ),x) , ∀x ∈M .

.
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Proposition 2.8. Let J :M→ g∗ be a contact momentum map relative to (M,η) for a contact
Lie group action Φ : G×M→M. Then, the mapping ξ ∈ g %→ Jξ ∈ C∞

g (M) is a Lie algebra
morphism. Moreover,

J : x ∈M %−→ J(x) ∈ g∗

induces a Poisson algebra morphism J∗ : f ∈ C∞(g∗) %→ f ◦ J ∈ C∞
g (M) relative to the

Kirillov–Kostant–Souriau bracket on g∗.

Proof. Taking into account that RJξ = 0 for every ξ ∈ g, we have, for an arbitrary ν ∈ g, that

ιξ̃dJν =−ιξ̃ (ιν̃dη− (RJν)η) = dη(ξ̃, ν̃) =−{Jξ,Jν}− Jξ RJν + JνRJξ =−{Jξ,Jν} .

On the other hand, since Φ is Ad-equivariant, one has

ιξ̃dJν = ξ̃ Jν =−⟨J, [ξ,ν]⟩=−J[ξ,ν] , ∀ξ,ν ∈ g ,

which shows that ξ ∈ g %→ Jξ ∈ C∞(M) is a Lie algebra morphism.
Since the Kirillov–Kostant–Souriau bracket is a Poisson bracket and the space of good

Hamiltonian functions relative to (M,η) is a Poisson algebra relative to the bracket (2.2), for
all functions f,g ∈ C∞(g∗) and a basis {e1, . . . ,er} of g≃ g∗∗, it follows that

{f,g}g∗ ◦ J=
(

∂f
∂ei

◦ J
)(

∂g
∂ej

◦ J
)
({ei,ej}g∗ ◦ J) = cijk

(
∂f
∂ei

◦ J
)(

∂g
∂ej

◦ J
)
(ek ◦ J)

=

(
∂f
∂ei

◦ J
)(

∂g
∂ej

◦ J
)
{ei ◦ J,ej ◦ J}= {f ◦ J,g ◦ J}, (2.3)

for [ei,ej] = cijkek and i, j = 1, . . . ,r.

Assume that h ∈ C∞(M) is such that ξ̄h= 0 for every ξ ∈ g, as frequently assumed in the
symplectic Marsden–Weinstein reduction of Hamilton systems [61]. Note that

XhJξ = ιXhdJξ =−ιXhιξ̃dη = ιξ̃ιXhdη = ιξ̃(dh− (Rh)η) =−(Rh)Jξ , ∀ξ ∈ g , (2.4)

which means that the level sets of J, unlike in the symplectic case, are not conserved under the
evolution of Xh. Nevertheless, Xh is tangent to J−1(R+µ), provided it is a submanifold, since

⟨LXhJ,ξ⟩= ⟨−(Rh)J,ξ⟩ , ∀ξ ∈ g .

This shows that it is J−1(R+µ) what plays a role in the contact Marsden–Weinstein reduction.
More specifically, one can state the following definition and Marsden–Weinstein reduction
theorem [81].

Definition 2.9. LetΦ : G×M→M be a proper contact Lie group actionwith respect to (M,η).
Consider its associated contact momentum map J : M→ g∗ and µ ∈ g∗. The kernel group of
µ is the unique connected Lie subgroup of Kµ ⊂ Gµ with Lie algebra kµ = kerµ|gµ , where gµ
is the Lie algebra of the isotropy group Gµ of the point µ ∈ g∗ relative to the coadjoint action
of G on g∗. The contact quotient, or contact reduction of M by G at µ is

Mµ = J−1(R+µ)/Kµ .

The following theorem is a slightly different formulation of theorem 1 in [81], where Mµ

was shown to be an orbifold [78] and η gave rise to a one-form ηµ on Mµ whose kernel is a
contact distribution. If we assume that Mµ is a manifold, then ηµ becomes a contact form. In
other words, we have the following theorem.

9
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Theorem 2.10. Let G be a Lie group acting by contactomorphisms with respect to (M,η), and
let J :M→ g∗ be its associated contact momentummap. Let Kµ, with µ ∈ g∗, be the connected
Lie subgroup of Gµ with Lie algebra kµ = kerµ|gµ . If

(i) Kµ acts properly on J−1(R+µ),
(ii) J is transverse (see [2] for a definition) to R+µ,
(iii) kerµ+ gµ = g,

then the quotient Mµ = J−1(R+µ)/Kµ, if a manifold, is naturally a contact manifold, i.e.

kerη ∩T
(
J−1(R+µ)

)

gives rise to a contact manifold on the quotient Mµ relative to the unique contact one-form,
ηµ, on Mµ such that π∗

µηµ = η|J−1(R+µ) for the canonical projection πµ : J−1(R+µ)→Mµ.

It is convenient to state the following contact Marsden–Weinstein reduction theorem for
contact Hamiltonian systems. Although it follows immediately from previous comments and
theories [3, 47, 49, 81], it seems to be absent in the literature.

Corollary 2.11. Let the assumptions of theorem 2.10 hold. If (M,η,h) is a contact Hamiltonian
system such that Φ∗

gh= h for every g ∈ G, then Xh is tangent to J−1(R+µ). Moreover,
Xh|J−1(R+µ) is projectable onto Mµ, where it becomes a Hamiltonian vector field relative
to ηµ with Hamiltonian function f ∈ C∞(Mµ) determined univocally by π∗

µ f = ι∗µh, where
ιµ : J−1(R+µ)→M is the natural immersion into M.

Proof. It follows from (2.4) that Xh is tangent to J−1(R+µ). Since h, η, and dη are invariant
relative to the Lie group action Φ : G×M→M, i.e. Φ∗

gh= h, Φ∗
gη = η, and Φ∗

gdη = dη for
every g ∈ G, then the pull-back relative to Φ∗

g of the equations

ιXhdη = dh− (Rh)η , ιXhη =−h , (2.5)

imply that Φg∗Xh = Xh for every g ∈ G. Hence, Xh is invariant relative to the action of the
elements of Kµ ⊂ G, and the restriction of Xh to J−1(R+µ) can be projected onto Mµ. The
expressions (2.5) are projectable and πµ∗Xh becomes a Hamiltonian vector field relative to the
contact structure ηµ onMµ with Hamiltonian function f ∈ C∞(Mµ) such that π∗

µf = ι∗µh.

3. Contact Lie systems

Let V be a Lie algebra with Lie bracket [·, ·] : V×V→ V. Given subsets A,B ⊂ V, we write
[A,B] for the real vector space generated by the Lie brackets between the elements of A and
B. Then, Lie(A,V, [·, ·]), or simply Lie(A), stands for the smallest Lie subalgebra of V (in the
sense of inclusion) containing A.

A time-dependent vector field on M is a map X : R×M→ TM such that, for every t ∈ R,
the map Xt = X(t, ·) : M→ TM is a vector field. In the applications of our methods, t will
mainly refer to the physical time. Due to this, we will call X a time-dependent vector field.
A time-dependent vector field X on M amounts to a one-parametric family of vector fields Xt
on M with t ∈ R. An integral curve of X is an integral curve, γ : t ∈ R %→ (t,x(t)) ∈ R×M,
of the autonomisation of X, namely ∂/∂t+X, which is understood in the natural way as an
element in X(R×M). Every time-dependent vector field, X, on M gives rise to its referred to
as associated system given by

dx
dt

= X(t,x) , ∀t ∈ R , ∀x ∈M . (3.1)

10
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The curves γ : t ∈ R %→ (t,x(t)) ∈ R×M, where x(t) is a solution of the above system of differ-
ential equations, are the integral curves of X. Conversely, every time-dependent system of first-
order ordinary differential equations in normal form in M, that is (3.1), describes the integral
curves of a unique time-dependent vector field X onM. Hence, this allows us to identify X with
its associated system, namely (3.1), and to use X to refer to both. Such a notation will not lead
to any misunderstanding, as it will be clear from context what we mean by X in each case. The
smallest Lie algebra of a time-dependent vector field X is the Lie algebra VX = Lie({Xt}t∈R).
Every Lie algebra of vector fields V on M gives rise to an associated distribution on M of the
form

DV
x = {Xx : X ∈ V} , ∀x ∈M .

In particular, a time-dependent vector field X onM gives rise to an associated distribution,DX,
given by DX =DVX . It is worth noting that DV does not need to have constant rank at every
point ofM, namely the subspaces DV

x may have different dimension at different points x ∈M.
A Lie system is a time-dependent vector field X on M whose smallest Lie algebra VX is

finite-dimensional [34]. If X takes values in a finite-dimensional Lie algebra of vector fields V,
i.e. {Xt}t∈R ⊂ V, we call V a VG Lie algebra of X and it is said that X admits a VG Lie algebra
V. Note that X can be considered as a curve t %→ Xt in V. A time-dependent vector field X admits
a VG Lie algebra if, and only if, VX is finite-dimensional. An automorphic Lie system is a Lie
system, XG, on a Lie group G admitting a VG Lie algebra given by the space of right-invariant
vector fields, XR(G), on G. A locally automorphic Lie system is a triple (M,X,V) such that V
is a VG Lie algebra of X whose associated distribution,DV, is equal to TM and dimV= dimM
[52].

Example 3.1 (Riccati equations). Consider the differential equation

dx
dt

= a1(t)+ a2(t)x+ a3(t)x2 , ∀x ∈ R, ∀t ∈ R, (3.2)

where a1(t),a2(t),a3(t) are arbitrary time-dependent functions. System (3.2) is the system
associated with the time-dependent vector field on R given by

X(t,x) =
3∑

α=1

aα(t)Xα(x) , ∀x ∈ R , ∀t ∈ R ,

where

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = x2

∂

∂x
are vector fields on R. Since

[X1,X2] = X1 , [X1,X3] = 2X2 , [X2,X3] = X3 ,

it follows that X1,X2,X3 span a Lie algebra isomorphic to sl2. Thus, X defines a Lie system on
R with VG Lie algebra ⟨X1,X2,X3⟩ ≃ sl2. △

The main property of Lie systems is the so-called superposition rule [17, 82]. A superpos-
ition rule for a system X on M is a map Φ :Mk×M→M such that the general solution, x(t),
of X can be written in the form x(t) = Φ

(
x(1)(t), . . . ,x(k)(t);ρ

)
, where x(1)(t), . . . ,x(k)(t) is a

generic family of particular solutions of X and ρ is any point in M related to the initial condi-
tions of X. The Lie theorem [17, 20, 82] states that a system X admits a superposition rule if
and only if it is a Lie system.

A Lie–Hamilton system is a triple (M,Λ,X), where X is a Lie system on M admitting a
VG Lie algebra of Hamiltonian vector fields relative to a Poisson bivector Λ on M. If Λ♯ is

11
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invertible, it gives rise to a symplectic form ω such that ω(v, ·) = (Λ♯)−1(v) for every v ∈
TM, and we will sometimes denote (M,Λ,X) by (M,ω,X). Lie–Hamilton systems became
relevant as symplectic and Poisson techniques were applied to determine superposition rules,
Lie symmetries, constants of motion, and other properties in a simple way [34].

Finally, a Jacobi–Lie system is a quadruple (M,Λ,R,X), where X is a Lie system on
M admitting a VG Lie algebra of Hamiltonian vector fields relative to a Jacobi manifold
(M,Λ,E). We call Jacobi–Lie Hamiltonian system a quadruple (M,Λ,E,h), where (M,Λ,E)
is a Jacobi manifold and h : (t,x) ∈ R×M %→ ht(x) ∈ R is a time-dependent function such that
Lie({ht}t∈R,{·, ·}) is a finite-dimensional Lie algebra relative to the Lie bracket {·, ·} associ-
ated with the Jacobi manifold (M,Λ,E). Given a systemX onM, we say thatX admits a Jacobi–
Lie Hamiltonian system (M,Λ,E,h) if Xt is a Hamiltonian vector field with Hamiltonian func-
tion ht (with respect to (M,Λ,E)) for each t ∈ R [4, 5, 34, 56]. We hereafter write Cas(M,Λ,E)
the space of Hamiltonian functions related to a zero vector field with respect to a Jacobi man-
ifold (M,Λ,E).

Definition 3.2. A contact Lie system is a triple (M,η,X), where η is a contact form onM and
X is a Lie system onM whose smallest Lie algebra, VX, is a finite-dimensional real Lie algebra
of contact Hamiltonian vector fields relative to η. A contact Lie system is of Liouville type if
the Hamiltonian functions of the vector fields in VX are first integrals of the Reeb vector field
of (M,η).

The term ‘Liouville’ refers to the fact that contact Lie systems of Liouville type satisfy an
analogue of the Liouville theorem in symplectic geometry, as it will be proved in proposition
3.5. Note that a contact Lie system of Liouville type amounts to a contact Lie system (M,η,X)
that is invariant relative to the flow of the Reeb vector field, R, of η, namelyLRXt = 0 for every
t ∈ R.

A Lie system X can be considered as a curve in VX. In contact manifolds, every Hamiltonian
vector field gives rise to a unique Hamiltonian function. Therefore, VX gives rise to a linear
space of functions W and X defines a curve in W. Due to the isomorphism of Lie algebras
between the space of Hamiltonian vector fields of (M,η) and C∞(M), it turns out thatW is a
Lie algebra. This suggests us the following definition.

Definition 3.3. A contact Lie–Hamiltonian system is a triple (M,η,h) where h : R×M→
R gives rise to a time-parametrised family of functions ht : x ∈M %→ h(t,x) ∈ R, with t ∈ R,
which is contained in a finite-dimensional Lie algebra of functions relative to the Lie bracket
in C∞(M) induced by (M,η). We call h a contact Lie–Hamiltonian (relative to η).

Every contact Lie system gives rise a unique contact Lie–Hamiltonian system and con-
versely. If M and η are known from the context, h can be called a contact Lie–Hamiltonian
system. Note that the fact that the functions {ht}t∈R span a finite-dimensional Lie algebra or
not depends on η and, formally, a contact Lie–Hamiltonian system must be defined as a triple
(M,η,h).

Example 3.4 (A simple control system). Consider the system of differential equations in R3

given by
⎧
⎪⎨

⎪⎩

dx
dt = b1(t) ,
dy
dt = b2(t) ,
dz
dt = b2(t)x ,

∀(x,y,z) ∈ R3, (3.3)

where b1(t),b2(t) are two arbitrary functions depending only on time. The relevance of this
system is due to its occurrence in control problems [67].

12
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System (3.3) describes the integral curves of the time-dependent vector field on R3 given
by

X= b1(t)X1 + b2(t)X2 , (3.4)

where

X1 =
∂

∂x
, X2 =

∂

∂y
+ x

∂

∂z
.

The vector fields X1,X2, and X3 = ∂/∂z, span a three-dimensional VG Lie algebra V=
⟨X1,X2,X3⟩ ≃ h3 of X, where h3 is the so-called three-dimensional Heisenberg Lie algebra.
Indeed, the commutations relations for X1,X2,X3 read

[X1,X2] = X3 , [X1,X3] = 0 , [X2,X3] = 0 .

The vector fields X1,X2,X3 are contact Hamiltonian vector fields with respect to the contact
form on R3 given by

ηc = dz− ydx ,

with Hamiltonian functions

h1 = y , h2 =−x , h3 =−1 ,

respectively. It follows that all the elements of VX are Hamiltonian vector fields relative to
(R3,ηc). Hence, the time-dependent Hamiltonian for (3.3) relative to (R3,ηc) is given by
(R3,ηc,h) for

ht = b1(t)y− b2(t)x , ∀t ∈ R.

Thus, (R3,ηc,X) is a contact Lie system. Since h1,h2,h3 are first integrals of X3 = ∂/∂z, which
is the Reeb vector field of ηc, then (R3,ηc,X) is of Liouville type. In fact, [X3,Xt] = 0 for every
t ∈ R.

Note that ηc gives rise to a volume form Ωηc = ηc ∧ dηc on R3. Moreover the evolution
of (3.3) leaves Ωηc invariant. △

Let us study the behaviour of the volume form, Ωη = η ∧ (dη)n, induced by a (2n+ 1)-
dimensional contact manifold (M,η) relative to the dynamics of a contact Lie system (M,η,X).

Proposition 3.5. Let (M,η,X) be a contact Lie system on a (2n+ 1)-dimensional contact
manifold (M,η) and let Ωη = η ∧ (dη)n. Then,

LXtΩη = 0 , ∀t ∈ R

if and only if (M,η,X) is of Liouville type.

Proof. Assume that (M,η,X) is of Liouville type. The vector fields of the smallest Lie algebra,
VX, are of the form Xf for a certain f ∈ C∞(M) such that Rf = 0. Then,

LXfΩη = LXf(η ∧ (dη)n)

= (LXfη)∧ (dη)n+ nη ∧ (dLXf)η ∧ (dη)n−1 =−(n+ 1)(Rf)Ωη , (3.5)

since LXfη =−(Rf)η. As Rf = 0, and X=
∑r

α=1 bα(t)Xα for some basis X1, . . . ,Xr of VX and
functions b1(t), . . . ,br(t), then LXtΩη = 0.

Conversely, if LXtΩη = 0 for every t ∈ R, then the functions ht =−ιXtη, with t ∈ R, satisfy
that

0= LXtΩη =−(n+ 1)(Rht)Ωη, ∀t ∈ R,

13
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which implies that Rht = 0 for every t ∈ R. Moreover X admits a unique time-dependent
Hamiltonian function h=

∑r
α=1 bα(t)hα, where h1, . . . ,hr are some linearly independent

Hamiltonian functions whose Hamiltonian vector fields belong to the linear space ⟨Xt⟩t∈R ⊂
VX, where the span is over the reals, and the b1(t), . . . ,br(t) are linearly independent too. Note
that Xh1 , . . . ,Xhr do not need to span the full VX, while {h1, . . . ,hr} is a basis of the linear
span, over the reals, of the form ⟨ht⟩t∈R =W . Let us assume, without loss of generality, that
h1, . . . ,hs span the space of good Hamiltonian functions inW . The condition Rht = 0 for every
t ∈ R implies that

∑r
α=s+1 bα(t)Rhα = 0. Then,Rhα = 0 forα= s+ 1, . . . ,r. This implies that

r= s andW is spanned by first integrals of R. Moreover, {hi,hj}, with i, j = 1, . . . ,r, and their
successive Lie brackets will also be first integrals of R. Hence, the Lie algebra of Hamiltonian
functions of the vector fields of VX consists only of first integrals of the Reeb vector field R.
Hence, (M,η,X) is a contact Lie system of Liouville type.

Note that the space of Hamiltonian vector fields on M relative to (M,η) and admitting a
Hamiltonian function being a first integral of R is a Lie subalgebra of Xham(M).

Theorem 3.6 (Gromov’s non-squeezing theorem). Let (M,ω) be a symplectic manifold
and let {q1, . . . ,qn,p1, . . . ,pn} be Darboux coordinates for ω on an open subset U⊂M, i.e.
ω = dqi ∧ dpi. Given the set of points

B(r) =

{
(q,p) ∈ U :

n∑

i=1

[
(qi− qi0)

2 +(pi− p0i )
2]! r2

}
,

where (q10, . . . ,q
n
0,p

0
1, . . . ,p

0
n) ∈ U and r ∈ R+, if the image of B(r) under a symplectomorphism

φ :M→M is such that φ(B(r))⊂ Cρ, where

Cρ =
{
(q,p) ∈ U : (q1 − q10)

2 +(p1 − p01)
2 ! ρ2

}
,

for ρ ∈ R+, then r! ρ.

Our interest in the Gromov’s non-squeezing theorem is due to the fact that it applies to the
Hamiltonian system relative to a symplectic form appearing as the projection of a contact Lie
system of Liouville type (M,η,X) onto the space of integral submanifolds of R inM, let us say
M/R, if the latter admits a manifold structure [2]. In other words, one has the following.

Proposition 3.7 (Non-squeezing contact theorem). Let (M,η,X) be a contact Lie system of
Liouville type. Given a family of Darboux coordinates {q1, . . . ,qn,p1, . . . ,pn,z} for η on an
open subset U⊂M, i.e. η = dz− pidqi, and the set of points

B(r) =

{
(q,p) ∈ U :

n∑

i=1

[
(qi− qi0)

2 +(pi− p0i )
2]! r2

}
,

where (q10, . . . ,q
n
0,p

0
1, . . . ,p

0
n,z) ∈ U and r ∈ R+, if the image of B(r) under a symplectomorph-

ism φ :M→M is such that φ(B(r))⊂ Cρ, where

Cρ =
{
(q,p) ∈ U : (q1 − q10)

2 +(p1 − p01)
2 ! ρ2

}
,

for ρ ∈ R+, then r! ρ.

Proof. Since X is a Lie system of Liouville type, it follows that [R,Xt] = 0 for every t ∈ R.
Hence, X can be projected onto a time-dependent vector field Yt on M/R. Moreover, ιXtdη =
dht for every t ∈ R. Since Xt, dη and the {ht}t∈R are invariant relative to R, corollary 2.11
implies that each vector field Yt, with t ∈ R, on Mµ is Hamiltonian relative to the symplectic
manifold (M/R,ω), where ω is the only two-differential form on Mµ such that π∗

Rω = dη for
the canonical projection πR :M→M/R. The coordinates {q1, . . . ,qn,p1, . . . ,pn} of a Darboux
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coordinate system {q1, . . . ,qn,p1, . . . ,pn,z} on M can be considered as the pull-back to M via
πR of a Darboux coordinate system {q1, . . . ,qn,p1, . . . ,pn} on (M/R,ω), which are denoted in
the same manner for simplicity. Then, one can apply the non-squeezing Gromov theorem to
Y on (M/R,ω), which gives rise to the statement of our contact non-squeezing theorem for
contact Lie systems of Liouville type.

3.1. Contact Lie systems and other classes of Lie systems

Recall that Lie–Hamilton systems are Lie systems admitting a VG Lie algebra of Hamiltonian
vector fields relative to a Poisson bivector. They were the first studied type of Lie systems
admitting a VG Lie algebra of Hamiltonian vector fields relative to a geometric structure [18,
19]. Despite that, they were insufficient for studying many types of Lie systems [34]. Let us
study why contact Lie systems are interesting on their own and their relations to other types of
Lie systems. Let us start by the next proposition, which is a no-go result for the existence of a
Poisson bivector turning the vector fields of a VG Lie algebra of a Lie system into Hamiltonian
vector fields. It is indeed a version of proposition 5.1 in [23].

Proposition 3.8. If (M,Λ,X) is a Lie–Hamilton system and DX = TM, then M is even-
dimensional.

Proof. Since (M,Λ,X) is a Lie–Hamilton system, the vector fields of VX are Hamiltonian
relative to Λ and DX = TM is spanned by Hamiltonian vector fields. Hence, the characteristic
distribution of Λ, which is spanned by all Hamiltonian vector fields and has even rank at every
point [79], must be TM. Hence, TM has even rank and M is even dimensional.

Proposition 3.8 shows that Lie–Hamilton systems are not appropriate to describe Lie sys-
tems admitting certain smallest Lie algebras. Note that, for instance, example 3.4 describes
a Lie system whose smallest Lie algebra satisfies the conditions of proposition 3.8 when the
vectors (b1(t),b2(t)), with t ∈ R, span R2 and, therefore, VX = ⟨X1,X2,X3⟩ while DX = TR3.
This illustrates the need for describing Lie systems admitting VG Lie algebras of Hamiltonian
vector fields relative to other geometric structures, like contact manifolds.

The following proposition shows how contact Lie systems of Liouville type induce some
Lie–Hamilton systems on other spaces.

Proposition 3.9. If (M,η,X) is a contact Lie system of Liouville type, the space of integral
curves of the Reeb vector field R, let us say M/R, is a manifold, and πR :M→M/R is the
canonical projection, then (M/R,ω,π∗X), where ω is the only differential form on M/R such
that π∗

Rω = dη, is a Lie–Hamilton system relative to the symplectic form ω on M/R.

Proof. Since (M,η,X) is of Liouville type, the Lie derivative of the Reeb vector field R with
the Hamiltonian vector fields of VX is zero. Therefore, all the elements of VX are projectable
ontoM/R. Moreover, LRdη = 0 and ιRdη = 0. Hence, dη can be projected ontoM/R. In other
words, there exists a unique two-form, ω, on M/R such that π∗

Rω = dη. Note that ω is closed.
Moreover, if ιY[x]ω[x] = 0 for a tangent vector Y[x] ∈ T[x](M/R), then there exists a tangent vec-
tor Ỹx ∈ TxM projecting onto Y[x] via TxπR. Then, TxπTRιY[x]ω[x] = ιỸx(dη)x = 0. Hence, Ỹx takes
values in the kernel of (dη)x and it is proportional to Rx. Hence, πR∗xYx = 0 and ω is non-
degenerate. Since ω is closed, it becomes a symplectic form and the vector fields of πR∗VX span
a finite-dimensional Lie algebra of Hamiltonian vector fields relative to ω. Therefore, the time-
dependent vector field πR∗X, namely the t-parametric family of vector fields (πR∗X)t = πR∗Xt
for every t ∈ R, becomes a Lie–Hamilton system relative to ω.
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Since the vector fields of a VG Lie algebra of a contact Lie system are Hamiltonian vector
fields relative to its associated Jacobi manifold, one may ask whether contact Lie systems are
interesting on its own. There are several reasons for their study. For instance, contact struc-
tures have particular properties that are not shared by general Jacobi manifolds and they are
specific. For example, every Hamiltonian function determines a unique Hamiltonian vector
field and conversely, which make some results more specific, e.g. every contact Lie system
admits a contact Lie–Hamiltonian system. Moreover, as we focus on contact Lie systems on
contact manifolds admitting a contact form, several results related to the contact form are
available.

Proposition 3.10. Every contact Lie system (M,η,Xh) gives rise to a Lie–Hamilton system
(R×M,e−s(dη+ η ∧ ds),−(Rh)∂/∂s+Xh), where s is the natural variable in R understood
as a variable in R×M in the natural way.

Proposition 3.10 may be inappropriate to study contact Hamiltonian systems on M via
Hamiltonian systems on symplectic manifolds. This is due to the fact that the dynamics of a
contact Hamiltonian vector field onMmay significantly differ from the Hamiltonian system on
R×M used to study it. For example, a contact Hamiltonian vector fieldX onMmay have stable
points, while−(Rh)∂/∂s+Xh, which is its associated Hamiltonian vector field onR×M, has
not. This has relevance in certain theories, like the energy–momentummethod [61]. Moreover,
every contact Lie system can be understood as the projection of a Lie–Hamilton system on a
homogeneous symplectic manifold (see [47]). Anyhow, the latter approach is not appropriate
for our purposes for a number of reasons, e.g. considering Lie systems on manifolds of lar-
ger dimension may make the study of contact Lie systems harder to solve. Examples of this
problem will be given in section 4.

Finally, let us recall that a multisymplectic Lie system is triple (M,Θ,X), where X is a Lie
system onM admitting a VG Lie algebra of Hamiltonian vector fields relative to the multisym-
plectic form Θ on M (see [52, 54] for details). The following proposition, whose proof is
immediate, relates contact Lie systems of Liouville type to multisymplectic Lie systems.

Corollary 3.11. If (M,η,X) is a contact Lie system of Liouville type, then (M,Ωη,X) is a
multisymplectic Lie system.

Multisymplectic techniques significantly differ from contact ones and, although the above
result has several applications [54], the contact approach may bemore interesting, for instance,
to use reduction techniques for Lie systems, since there exists no general multisymplectic
reduction so far.

4. Existence of invariant contact forms for Lie systems

Let us analyse the existence of contact forms turning the elements of a VG Lie algebra into
good Hamiltonian vector fields. Our results will help us to determine Lie systems that can be
considered as contact Lie systems of Liouville type. In particular, the classification of auto-
morphic Lie systems on three-dimensional Lie groups with a non-abelian Lie algebra and
admitting a left-invariant contact form will be given.

Lemma 4.1. Let (M,X,VX) be a locally automorphic Lie system. If η is a differential form
on M such that LYη = 0 for every Y ∈ VX, then the value of η at a point of M determines the
value of η on the whole M.
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Proof. Let x ∈M be a fixed arbitrary point and let m= dimM. Since the vector fields in VX

span the distribution TM, it follows from the Orbit theorem [76, theorem 4.1] that x can be
connected to any other point y ∈M by a local diffeomorphism of the form

φxy = exp(t1Xi1) ◦ exp(t2Xi2) ◦ · · · ◦ exp(tkXik) , (4.1)

where k ∈ N is a natural number or zero, exp(tY) is the t-parametric group of local diffeo-
morphisms related to any Y ∈ X(M), the vector fields X1, . . . ,Xm form a basis (over the reals)
of VX, and t1, . . . , tk ∈ R while i1, . . . , ik ∈ {1, . . . ,m}. Since LYη = 0 for every Y ∈ VX and due
to (4.1), it follows that φ∗

xyηy = ηx and the value of ηy is determined by ηx.

Proposition 4.2. Let (M,X,VX) be a locally automorphic Lie system on an odd-dimensional
manifold. Then, there exists a bijection between the space C of contact forms turning the ele-
ments of VX into good Hamiltonian vector fields and the one-chains, ϑ, of the Chevalley–
Eilenberg cohomology of g isomorphic to VX such that ϑ∧ (δϑ)k is a non-zero (2k+ 1)-
covector with dimM= 2k+ 1.

Proof. By lemma 4.1 and our assumptions, a contact form onM is determined by its value at
one point x ∈M. Every locally automorphic Lie system (M,VX,X) is locally diffeomorphic to
an automorphic Lie system (see [52] for details). In our case, there exists a local diffeomorph-
ism ϕ : G→M such that X is ϕ-related to a Lie system on a Lie group G with Lie algebra g
so that

dg
dt

=
r∑

α=1

bα(t)XRα(g) , ∀g ∈ G , (4.2)

for a basis of right-invariant vector fields {XR1 , . . . ,XRr } on G and some time-dependent func-
tions b1(t), . . . ,br(t). Since VX is the smallest Lie algebra containing the vector fields {Xt}t∈R,
whileDVX = TM, and (4.2) is locally diffeomorphic toX, it follows that the smallest Lie algebra
of (4.2) is ⟨XR1 , . . . ,XRr ⟩, which spans TG. Since the elements of VX are good Hamiltonian vec-
tor fields, the contact form η for X satisfies that LYη = 0 for every Y ∈ VX. Then, the local
diffeomorphism ϕ maps the invariant contact form for X to a left-invariant contact form ηL

for (4.2).
If ηL is a left-invariant contact form on G, then ηL ∧ (dηL)k is a volume form on G for

2k+ 1= dimG= dimVX = dimM. Moreover,

dηL(XLi ,X
L
j ) =−ηL([XLi ,X

L
j ]) , i, j = 1, . . . ,r .

Define δ : g∗ →
∧2 g∗ to be minus the transpose of [·, ·] :

∧2 g→ g. On the other hand, ηL ∧
(dηL)k being a volume form amounts to the fact that its value at the neutral element e is different
from zero. But ηLe ∧ (dηL)ke = ηLe ∧ (δηLe )

k. Setting ηLe = ϑ, the results follows.

The conditions in proposition 4.2 can be verified for every automorphic Lie system on a
three-dimensional Lie group with a smallest Lie algebra given by the right-invariant vector
fields on the Lie group, as their Lie algebras are completely classified. The abelian case is
immediate: every left-invariant one-form has zero differential and no left-invariant contact
form exists. Moreover, every real non-abelian three-dimensional Lie algebra is isomorphic
to (E, [·, ·]), where E is a three-dimensional vector space and the Lie bracket is given on a
canonical basis {e1,e2,e3} of E by one of the cases in table 1 (see e.g. [36, 38]).

Despite the interest of associating contact manifolds with symplectic ones of larger dimen-
sion to study global geometric properties of the former (as done in [8, 47]), the idea is not, in
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many cases, appropriate to study contact Hamiltonian systems. For instance, we already com-
mented after proposition 3.10 that such methods relate Hamiltonian vector fields on a contact
manifold with equilibrium points to new ones in a symplectic manifold without them, which
radically changes their stability properties (see [47, 74]). In our case now, it is not useful to
relate contact Lie systems on three-dimensional Lie groups to Hamiltonian Lie systems in
four-dimensional manifolds because the classification problem of the latter is much harder.
This is due two facts: to the larger dimension of the related manifold and the need for relating
the obtained classification with the initial, searched, one.

Let us now classify left-invariant contact forms for automorphic Lie systems on three-
dimensional Lie groups Lie algebras sl2, r3,λ, and r ′3,λ ̸=0. More specifically, we will study
the conditions required for ϑ= λ1e1 +λ2e2 +λ3e3 ∈ T∗

eG≃ g∗, where {e1,e2,e3} is the dual
basis to the basis {e1,e2,e3} of TeG and λ1,λ2,λ3 ∈ R, to be the value of a left-invariant
contact form at the neutral element of a non-abelian three-dimensional Lie groups related
to sl2, r3,λ.

• Case sl2: The corresponding Lie bracket is an skew-symmetric bilinear function that can
be understood univocally as a mapping [·, ·] : sl2 ∧ sl2 → sl2. Defining the map δ : sl∗2 →
sl∗2 ∧ sl∗2 as δ =−[·, ·]T, we have

δ(e1) =−e1([·, ·]) = 1
2
e3 ∧ e2 , δ(e2) =−e2([·, ·]) =−1

2
e1 ∧ e2 , (4.3)

δ(e3) =−e3([·, ·]) = 1
2
e1 ∧ e3 , (4.4)

and thus,

δ =
1
2
e1 ⊗ e3 ∧ e2 − 1

2
e2 ⊗ e1 ∧ e2 + 1

2
e3 ⊗ e1 ∧ e3 .

In this case, k= 1 and

0 ̸= δ(λ1e1 +λ2e2 +λ3e3)∧ (λ1e1 +λ2e2 +λ3e3)

=
1
2

(
λ1e3 ∧ e2 −λ2e1 ∧ e2 +λ3e1 ∧ e3

)
∧ (λ1e1 +λ2e2 +λ3e3)

=−1
2

(
λ2
1 + 2λ2λ3

)
e1 ∧ e2 ∧ e3 .

Then, the differential one-form ηL =
∑3

α=1λαηLα on SL(2,R), where ηLα(e) = eα for
α= 1,2,3, is a contact form if and only if λ2

1 + 2λ2λ3 ̸= 0.

• Case r3,λ, with λ ∈ (−1,1). As previously, define the map δ : r∗3,λ → r∗3,λ ∧ r∗3,λ as
δ =−[·, ·]T. Then,

δ(e1) =−e1([·, ·]) = 1
2
e1 ∧ e3 , δ(e2) =−e2([·, ·]) =−λ

2
e3 ∧ e2 , (4.5)

δ(e3) =−e3([·, ·]) = 0 , (4.6)

and thus,

δ =
1
2
e1 ⊗ e1 ∧ e3 − 1

2
λe2 ⊗ e3 ∧ e2 .
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Therefore,

0 ̸= δ(λ1e1 +λ2λe2 +λ3e3)∧ (λ1e1 +λ2e2 +λ3e3)

=

(
λ1

2
e1 ∧ e3 − λ2λ

2
e3 ∧ e2

)
∧ (λ1e1 +λ2e2 +λ3e3)

=
1
2
λ1λ2(1−λ)e1 ∧ e2 ∧ e3 .

Then, the left-invariant contact forms on a Lie group with Lie algebra isomorphic to r3,λ are
characterised by the condition λ1λ2 ̸= 0.

• Case r ′3,λ ̸=0. Defining the map δ : r ′∗3,λ ̸=0 → r ′∗3,λ ̸=0 ∧ r ′∗3,λ ̸=0 as δ =−[·, ·]T, we have

δ(e1) =
λ

2
e1 ∧ e3 − 1

2
e3 ∧ e2 , δ(e2) =−1

2
e1 ∧ e3 − λ

2
e3 ∧ e2 , δ(e3) = 0 ,

and thus,

δ =
λ

2
e1 ⊗ e1 ∧ e3 − 1

2
e1 ⊗ e3 ∧ e2 − 1

2
e2 ⊗ e1 ∧ e3 − λ

2
e2 ⊗ e3 ∧ e2 .

In this case,

0 ̸= δ(λ1e1 +λ2e2 +λ3e3)∧ (λ1e1 +λ2e2 +λ3e3)

=

(
λλ1

2
e1 ∧ e3 − λ1

2
e3 ∧ e2 − λ2

2
e1 ∧ e3 − λλ2

2
e3 ∧ e2

)
∧ (λ1e1 +λ2e2 +λ3e3)

=
1
2

(
λ2
1 +λ2

2

)
e1 ∧ e2 ∧ e3 .

Then, the differential one-form ηL =
∑3

α=1λαηLα on each Lie group with Lie algebra r ′3,λ ̸=0,
where ηLα(e) = eα, with α= 1,2,3, is a contact form if and only if λ2

1 +λ2
2 > 0.

The other cases can be computed similarly, as summarised in the following theorem.

Theorem 4.3. Let G be a Lie group with a three-dimensional non-abelian Lie algebra gwhose
dual has a basis {e1,e2,e3}. Then, the left-invariant one-form ηL =

∑3
α=1λαηLα on G, where

(ηLα)e = eα for α= 1,2,3 and λ1,λ2,λ3 ∈ R, is a contact form if and only if the condition for
the value of ηLe in table 1 for the Lie algebra g of G is satisfied.

The following proposition takes a deeper look at the properties of left-invariant contact
forms on Lie groups and show some of their properties. In particular, it proves that the space
of left-invariant contact forms on a Lie group must be invariant under the natural action of
Aut(G), namely the space of Lie group automorphisms of G, on g∗. Recall that Aut(G) acts
on G, which gives rise to a Lie group action ( f,v) ∈ Aut(G)× g %→ Tef(v) ∈ g and its dual one
on g∗.

Proposition 4.4. Let Aut(G) be the Lie group of Lie group automorphisms of G and let ϕ :
Aut(G)× g→ g be its associated action on g. Then, the space C of left-invariant contact forms
on G is invariant relative to the induced action of Aut(G) on g∗.

Proof. Let us prove that every f ∈ Aut(G) maps left-invariant one-forms on G into left-
invariant one-forms on G. First,

fLg(h) = f(gh) = f(g)f(h) = Lf(g)f(h), ∀g,h ∈ G, ∀f ∈ Aut(G).
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Table 1. Classification of left-invariant contact forms on three-dimensional Lie groups
with non-abelian Lie algebras. Note that λ ∈ (−1,1). The value of the left-invariant
contact form at the neutral element e is of the form ηLe =

∑3
i=1λie

i for the dual basis
{e1,e2,e3} to the basis {e1,e2,e3} of the Lie algebra g.

Lie algebra [e1,e2] [e1,e3] [e3,e2] Contact condition

sl2 e2 −e3 −e1 λ2
1 + 2λ2λ3 > 0

su2 e3 −e2 −e1 λ2
1 +λ2

2 +λ2
3 > 0

h3 e3 0 0 λ3 ̸= 0
r ′3,0 −e3 e2 0 λ2

2 +λ2
3 > 0

r3,−1 e2 −e3 0 λ2λ3 ̸= 0
r3,1 e2 e3 0 !
r3 0 −e1 e1 + e2 λ1 ̸= 0
r3,λ 0 −e1 λe2 λ1λ2 ̸= 0
r ′3,λ ̸=0 0 e2 −λe1 λe2 + e1 λ2

1 +λ2
2 > 0

Then, given a left-invariant one-form ηL on G, one has f∗ηL = f∗L∗gη
L = L∗f(g)f

∗ηL and since
f (g) gives every element of G for an appropriate element g, one has that f∗ηL is a new left-
invariant one-form. Hence, if ηL is a left-invariant contact form on G and dimG= 2k+ 1, one
has that

0 ̸= f∗[(dηL)k ∧ ηL] = [df∗ηL]k ∧ f∗ηL , ∀f ∈ Aut(G) .

And f∗ηL is a new contact form. Moreover, the value of (ηL)e at the neutral element e of G is
such that [ f∗ηL]e = (Te f)T[ηLe ]. Hence, if an element of µ ∈ g∗ determines the value at e of a
left-invariant contact form, all left-invariant one-forms with values at e within the orbit of µ
relative to the action of Aut(G) on g∗ give rise to contact forms.

Let Aut(g) stand for the group of Lie algebra automorphisms of g. Since the tangent map at
e ∈ G to every element of Aut(G) is an element of Aut(g) and vice versa, the action induced
by Aut(G) on g∗ is indeed a Lie group action of Aut(g) on g∗.

5. Examples

Let us apply the techniques devised in previous sections to some particular examples of phys-
ical and mathematical interest.

5.1. The Brockett control system

Let us consider a first example of contact Lie system. The Brockett control system [67] in R3

is given by
⎧
⎪⎨

⎪⎩

dx
dt = b1(t) ,
dy
dt = b2(t) ,
dz
dt = b2(t)x− b1(t)y ,

∀(x,y,z) ∈ R3, (5.1)

where b1(t) and b2(t) are arbitrary time-dependent functions. System (5.1) is associated with
the time-dependent vector field on R3 given by

X= b1(t)X1 + b2(t)X2 ,
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where

X1 =
∂

∂x
− y

∂

∂z
, X2 =

∂

∂y
+ x

∂

∂z
,

along with the vector field X3 = 2
∂

∂z
, span a three-dimensional VG Lie algebra V=

⟨X1,X2,X3⟩ on R3 with commutation relations

[X1,X2] = X3 , [X1,X3] = 0 , [X2,X3] = 0 .

As in example 3.4, the vector space ⟨X1,X2,X3⟩ is a VG Lie algebra isomorphic to the three-
dimensional Heisenberg Lie algebra h3 (see figure 1).

The Lie algebra of Lie symmetries of V, i.e. the vector fields on R3 commuting with all the
elements of V, is spanned by the vector fields

Y1 =
∂

∂x
+ y

∂

∂z
, Y2 =

∂

∂y
− x

∂

∂z
, Y3 = 2

∂

∂z
,

which have commutation relations

[Y1,Y2] =−Y3 , [Y1,Y3] = 0 , [Y2,Y3] = 0 .

Let us denote the Lie algebra of Lie symmetries of V by Sym(V). The dual base of one-forms
to {Y1,Y2,Y3} is

η1 = dx , η2 = dy , η3 =
1
2
(dz− ydx+ xdy) .

It is clear that dη3 = dx∧ dy. Since η3 ∧ dη3 = 1
2dx∧ dy∧ dz ̸= 0, we have that η3 is a contact

form in R3.
A short calculation shows that X1,X2,X3 are contact Hamiltonian vector fields with respect

to the contact form given by η3 with Hamiltonian functions

h1 = y , h2 =−x , h3 =−1 ,

respectively. Therefore, ⟨X1,X2,X3⟩ are also Hamiltonian vector fields relative to (R3,η3,X).
Thus, the triple (R3,η3,X) is a contact Lie system with a VG Lie algebra ⟨X1,X2,X3⟩ ≃ h3.
Moreover, the Reeb vector field is given by Y3 = X3. Then, (R3,η3,X) is a contact Lie system
Liouville. Moreover, the time-dependent Hamiltonian

ht = b1(t)h1 + b2(t)h2, ∀t ∈ R,
gives rise to a contact Lie–Hamiltonian system (R3,η3,h).

The projection of the original Hamiltonian contact system (5.1) onto R2/X3, the space of
orbits of X3, via the natural projection π : (x,y,z) ∈ R3 %→ (x,y) ∈ R2 ≃ R3/X3, reads

dx
dt

= b1(t) ,
dy
dt

= b2(t) . (5.2)

As foreseen by proposition 3.9, system 5.2 is Hamiltonian relative to the symplectic form
Ω= dx∧ dy that is determined by the condition dη = π∗Ω. The Liouville theorem for Ω on
R2 tells us that the evolution of (5.2) on R2 leaves invariant the area of any surface, but since
{x,y} are Darboux coordinates for Ω, the non-squeezing theorem also says that given a ball in
R2 centred at a point of radius r, then if the image of such a ball under the dynamics of (5.2) is
inside a ball in R2 of radius R with centre matching the centre of the original ball, then R" r.
In fact, the evolution of (5.2) is given by

x′ = x+
ˆ t

0
b1(t′)dt′ , y′ = y+

ˆ t

0
b2(t′)dt′ .
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Then, the image of a ball with centre at a point (x, y) at the time t0 = 0 evolved relative to the
evolution given by (5.2) until t is a new ball with centre at (x ′,y ′) and the same radius.

By the Liouville theorem for contact Lie systems of Liouville type, one has that the volume
of a space of solutions in R3 does not vary on time. Hence, (5.1) is then a Hamiltonian system
relative to a multisymplectic form Ωη , and therefore the methods developed in [54] can be
applied to the study of its properties.

5.2. The Schwarz equation

Consider a Schwarz equation [10, 64] of the form

d3x
dt3

=
3
2

(
dx
dt

)−1(d2x
dt2

)2

+ 2b1(t)
dx
dt

, (5.3)

where b1(t) is any non-constant time-dependent function. Equation (5.3) is of relevance since
it appears when dealing with Ermakov systems [58] and the Schwarzian derivative [23].

It is well known that equation (5.3) is a higher-order Lie system [22], i.e. the associated
first-order system

dx
dt

= v ,
dv
dt

= a ,
da
dt

=
3
2
a2

v
+ 2b1(t)v , (5.4)

is a Lie system. Indeed, the latter system is associated with the time-dependent vector field
X= X3 + b1(t)X1 defined on O = {(x,v,a) ∈ R3 | v ̸= 0}, where

X1 = 2v
∂

∂a
, X2 = v

∂

∂v
+ 2a

∂

∂a
, X3 = v

∂

∂x
+ a

∂

∂v
+

3
2
a2

v
∂

∂a
.

These vector fields satisfy the commutation relations

[X1,X2] = X1 , [X1,X3] = 2X2 , [X2,X3] = X3 ,

and thus span a three-dimensional VG Lie algebra V= ⟨X1,X2,X3⟩ ≃ sl2.
The Schwarz equation, when written as a first-order system (5.4), i.e. the hereafter called

Schwarz system, admits a Lie algebra of Lie symmetries, denoted by Sym(V), spanned by the
vector fields (see [33] for details)

Y1 =
∂

∂x
, Y2 = x

∂

∂x
+ v

∂

∂v
+ a

∂

∂a
, Y3 = x2

∂

∂x
+ 2vx

∂

∂v
+ 2(ax+ v2)

∂

∂a
.

These Lie symmetries satisfy the commutation relations

[Y1,Y2] = Y1 , [Y1,Y3] = 2Y2 , [Y2,Y3] = Y3 ,

and thus V≃ Sym(V). The basis {Y1,Y2,Y3} admits a dual basis of one-forms {η1,η2,η3}
given by

η1 = dx− x(ax+ 2v2)
2v3

dv+
x2

2v2
da , η2 =

ax+ v2

v3
dv− x

v2
da , (5.5)

η3 =− a
2v3

dv+
1
2v2

da . (5.6)

Since

η2 ∧ dη2 =
1
v3
dx∧ dv∧ da ,
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we have that (O,η2) is a contact manifold. The vector fields X1,X2,X3 are contact Hamiltonian
vector fields with Hamiltonian functions

h1 =
2x
v
, h2 =

ax− v2

v2
, h3 =

a(ax− 2v2)
2v3

,

respectively. Hence,V consists of Hamiltonian vector fields relative to (O,η2). Thus, (O,η2,X)
becomes a contact Lie system and its Reeb vector field is Y2.

The coordinates {x,v,a} are not Darboux coordinates for η2. Consider a new coordinate
system on O given by

q=
a
v
, p=

x
v
, z= lnv .

Using these coordinates, we obtain η2 = dz− pdq. Hence, they become Darboux coordinates
for η2. Now, the Reeb vector field, Y2, becomes ∂/∂z, and

X1 = 2
∂

∂q
, X2 = q

∂

∂q
− p

∂

∂p
+

∂

∂z
, X3 =

q2

2
∂

∂q
+(1− pq)

∂

∂p
+ q

∂

∂z
.

In Darboux coordinates {q,p,z}, the Lie symmetries Y1,Y2,Y3 of V read

Y1 =
1
ez

∂

∂p
, Y2 =

∂

∂z
, Y3 = ez

(
2
∂

∂q
− p2

∂

∂p
+ 2p

∂

∂z

)
.

The vector fields X1,X2,X3 have Hamiltonian functions

h1 = 2p , h2 = pq− 1 , h3 =
1
2
q2p− q ,

respectively. Moreover,

X= X3 + b1(t)X1 =

(
q2

2
+ 2b1(t)

)
∂

∂q
+(1− pq)

∂

∂p
+ q

∂

∂z
,

defines the system of ordinary differential equations
⎧
⎪⎨

⎪⎩

dq
dt =

q2

2 + 2b1(t) ,
dp
dt = 1− pq ,
dz
dt = q .

(5.7)

The dynamics portrait of system (5.7) is depicted in figure 1. It is a well-known result in contact
dynamics [29, 41] that the evolution of the Hamiltonian function h along a solution of Xh is
given by

LXhh=−(LRh)h ,

where R denotes the Reeb vector field. Since our Reeb vector field is Y2 = ∂/∂z and the
Hamiltonian functions h1,h2,h3 do not depend on the coordinate z, we have that our system
preserves the energy along the solutions. Then, it is of Liouville type.

Note that system (5.7) can be projected onto O/Y2 ≃ R2, which is a consequence of pro-
position 3.9. The projected system reads

dq
dt

=
q2

2
+ 2b1(t) ,

dp
dt

= 1− pq , (5.8)

which is Hamiltonian relative to the symplectic form Ω= dq∧ dp. Indeed, its Hamiltonian
function reads

k(t,q,p) =
1
2
q2p+ 2b1(t)p .
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Figure 1. Dynamics portrait of system (5.7) from three different perspectives.

Figure 2. Phase portrait of the reduced Schwarz system (5.8). One can see its two saddle
points at (−1,−1) and (1,1).

System (5.8) has no equilibrium points for b1(t)" 0. Meanwhile, system (5.8) and two equi-
librium points at

q=±2
√
−b1(t) , p=

±1

2
√
−b1(t)

for b1(t)< 0. Setting b1(t) =−1/4, system (5.8) has the form

dq
dt

=
q2

2
− 1

2
,

dp
dt

= 1− pq , (5.9)

and has equilibrium points (1,1) and (−1,−1). Both equilibria are saddle points. The phase
portrait for system (5.9) is depicted in figure 2.

As commented in the previous section, the volume of the evolution of a ball under the
dynamics of (5.9) is constant, as can be seen in figure 3, but if the initial ball has radius r and
origin at (0,0), then the evolution of the ball cannot be bounded by a ball of radius smaller
than r with centre at the origin.

24



J. Phys. A: Math. Theor. 56 (2023) 335203 J de Lucas and X Rivas

Figure 3. Evolution of a ball under the reduced Schwarz system (5.8). One can see that
although the ball is deformed, its area is preserved.

5.3. A quantum contact Lie system

Let us illustrate how contact Marsden–Weinstein reduction can be used to study and to reduce
contact Lie systems. Consider the linear space over the real numbers, W= ⟨iĤ1, . . . , iĤ5⟩,
spanned by the basis of skew-Hermitian operators on R2 given by

iĤ1 = ix̂ , iĤ2 = ip̂x =
∂

∂x
, iĤ3 = iŷ , iĤ4 = ip̂y =

∂

∂y
, iĤ5 = iId ,

where the only non-vanishing commutation relations between the elements of the basis read

[iĤ1, iĤ2] =−iĤ5 , [iĤ3, iĤ4] =−iĤ5 .
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The Lie algebraW appears in quantum mechanical problems. Let us consider the Lie algebra
morphism ρ :W %→ X(R5) satisfying that

ρ(iĤ1) = X1 =
∂

∂x1
, ρ(iĤ2) = X2 =

∂

∂x2
− x1

∂

∂x5
, ρ(iĤ3) = X3 =

∂

∂x3
,

ρ(iĤ4) = X4 =
∂

∂x4
− x3

∂

∂x5
, ρ(iĤ5) = X5 =

∂

∂x5
.

Consider the Lie system on R5 associated with the time-dependent vector field

XQ(t,x) =
5∑

α=1

bα(t)Xα(x) , ∀t ∈ R , x ∈ R5 ,

with arbitrary time-dependent functions b1(t), . . . ,b5(t), which has a VG Lie algebra VQ =
⟨X1, . . . ,X5⟩. The Lie algebra of Lie symmetries of VQ is spanned by the vector fields

Y1 =
∂

∂x1
− x2

∂

∂x5
, Y2 =

∂

∂x2
, Y3 =

∂

∂x3
− x4

∂

∂x5
, Y4 =

∂

∂x4
, Y5 =

∂

∂x5
.

Since Y1 ∧ . . .∧ Y5 ̸= 0 at every point of R5, there exists a basis of one-forms on R5 dual to
{Y1, . . . ,Y5} given by

η1 = dx1 , η2 = dx2 , η3 = dx3 , η4 = dx4 , η5 = dx5 + x2dx1 + x4dx3 ,

i.e. ιYjηi = δij, for i, j = 1, . . . ,5, where δij is the Kronecker’s delta function. Then, η5 ∧
(dη5)2 = 2dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 is a volume form on R5 and thus η5 becomes a con-
tact form on R5. Moreover, X1,X2,X3,X4,X5 are contact Hamiltonian vector fields with
Hamiltonian functions

h1 =−x2 , h2 = x1 , h3 =−x4 , h4 = x3 , h5 =−1 ,

respectively. Thus, XQ admits a VG Lie algebra VQ of Hamiltonian vector fields relative to η5,
and (R5,η5,XQ) becomes a contact Lie system. The Reeb vector field of η5 is given byX5 = Y5.
Since the Hamiltonian functions h1, . . . ,h5 are first integrals of the Reeb vector field, (R5,η5,X)
is a contact Lie system of Liouville type. It is relevant that many important techniques for
studying contact Lie systems will be only available for contact Lie systems of Liouville type.

Let us consider the Lie algebra of symmetries of VQ spanned by

VS = ⟨Y1,Y2,Y5⟩.

This Lie algebra is isomorphic to the Heisenberg three-dimensional Lie algebra h3. Moreover,
the vector fields of VS are also Hamiltonian relative the contact form η5. The momentum map
J : R5 → h∗3 associated with V

S is such that ιXiη5 = Ji for i = 1,2,5, where

J1 = x2, J2 =−x1, J5 =−1,

Note that J is not a submersion, but its tangent map has constant rank. By the Constant Rank
Theorem, J−1(µ) is a submanifold for every µ ∈ h∗3 and the tangent space at one of its points
x ∈ R5 is given by the kernel of TxJ, whatever µ ∈ h∗3 is. By theorem 2.10, the submanifold
J−1(R+µ) is invariant relative to the evolution of the contact Lie system.

Let us give the integral curves of the vector fields X1,X2,X5:

X1→x′1 = x1 +λ1 , x′2 = x2 , x′3 = x3 , x′4 = x4 , x′5 = x5 ,

X2→x′1 = x1 , x′2 = x2 +λ2 , x′3 = x3 , x′4 = x4 , x′5 = x5 −λ2x1 ,

X5→x′1 = x1 , x′2 = x2 , x′3 = x3 , x′4 = x4 , x′5 = x5 +λ3 ,
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where λ1,λ2,λ3 ∈ R. Thus, LX5J= 0 and λ(µ1,µ2,−1) = (λµ1,λµ2,−λ) /∈ ImJ unless
λ= 1. Then, J−1(R+µ) = J−1(µ) = {x1,x2}×R3. The isotropy subgroup of µ is the Lie sub-
group Gµ = G5, whose action on R5 has fundamental vector fields spanned by X5. Note that
kerµ|gµ = 0 and its related connected subgroup, Kµ, is the neutral element. Moreover,

J−1(R+µ)/Kµ = {x1,x2}×R3 .

Therefore, J−1(R+µ)/Kµ admits coordinates {x3,x4,x5}. It is simple to prove that conditions
for the contact Marsden–Weinstein reduction hold. Note that the projection of the initial con-
tact Lie system onto J−1(R+µ)/Kµ reads

X̄Q(t,x) =
5∑

α=2

bα(t)X̂α(x), ∀t ∈ R , ∀x ∈ R3,

while the projection of the initial VG Lie algebra is spanned by the vector fields

X̂2 =−x1
∂

∂x5
, X̂3 =

∂

∂x3
, X̂4 =

∂

∂x4
− x3

∂

∂x5
, X̂5 =

∂

∂x5
.

These are Hamiltonian vector fields relative to the contact form dx5 + x4dx3 with Hamiltonian
functions

h̄2 = x1, h̄3 =−x4 , h̄4 = x3 , h̄5 =−1 .

Since X̂5 is the Reeb vector fields onR3 relative to dx5 + x4dx3, the reduced contact Lie system
is also of Liouville type. In fact, it could be projected onto R3/X̂5 ≃ R2, giving rise to a Lie–
Hamilton system on R2 of the form

dx3
dt

= b3(t),
dx4
dt

= b4(t)

relative to ω = dx4 ∧ dx3.

5.4. A non-Liouville example

Consider the manifoldM= R3 equipped with linear coordinates {q,p,z}. The manifoldM has
a natural contact form given by the one-form η = dz− pdq. Its associated Reeb vector field is
R= ∂/∂z. Consider the vector fields on M given by

X1 =
∂

∂z
, X2 =

∂

∂q
, X3 = z

∂

∂q
− p2

∂

∂p
.

These vector fields are Hamiltonian relative to (R3,η) with Hamiltonian functions

h1 =−1 , h2 = p , h3 = pz ,

and span a three-dimensional VG Lie algebra with commutation relations

[X1,X2] = 0 , [X1,X3] = X2 , [X2,X3] = 0 ,

isomorphic to h3. This allows us to define a contact Lie system on R3 relative to η given by
(R3,η,X) with

X=
3∑

α=1

bα(t)Xα . (5.10)

where b1(t),b2(t),b3(t) are time-dependent functions such that VX = ⟨X1,X2,X3⟩. Since the
Hamiltonian function of X3 is not a first integral of the Reeb vector field R, then X is a
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non-Liouville contact Lie system. Note also that X is associated with the time-dependent
Hamiltonian function

h=
3∑

α=1

bα(t)hα ,

namely each Xt is the Hamiltonian vector field related to ht for every t ∈ R. As a consequence,
the volume form related to the contact form, namely

Ω= dη ∧ η = dq∧ dp∧ dz ,

is not invariant relative to the vector fields of the VG Lie algebra and Ω is not preserved by the
evolution of X. More specifically, if Ft0 : R×R3 → R3 is the flow starting from the point t0 of
X, namely Ft0(t0,x0) = x0 and Ft0(t,x0) = x(t), where x(t) is the particular solution to (5.10)
with x(t0) = x0, for every x0 ∈ R3, then

d
dt

∣∣∣∣
t=t0

ˆ
Ft0 (t,A)

Ω=
d
dt

∣∣∣∣
t=t0

ˆ
A
F∗
t0,tΩ=

ˆ
A
LXΩ ,

for every subset A⊂ R3. But LXΩ= 2(Rh)Ω. Hence,

d
dt

∣∣∣∣
t=t0

ˆ
Ft0 (t,A)

Ω= 2
ˆ
A
(Rh)Ω= 2

ˆ
A

(
3∑

α=1

bα(t)Rhα

)
Ω .

Note that if V= VX, then

3∑

α=1

bα(t)Rhα = b3(t)p ̸= 0

for a generic value of p ∈ R and t ∈ R.

6. Coalgebra method and superposition rules of Jacobi–Lie systems

Let us provide a method to derive superposition rules for contact Lie systems via Poisson
coalgebras. Our method is a modification of the coalgebra method for deriving superposition
rules for Dirac–Lie systems devised in [23]. It is worth noting that the coalgebra method does
not work for contact Lie systems per se since, as proved next, the diagonal prolongations of a
contact Lie system will not always be a contact Lie system.

Let us start by defining the diagonal prolongation of the sections of a vector bundle, as this
is a key for developing the coalgebra method for Lie systems admitting VG Lie algebras of
Hamiltonian vector fields relative to different geometric structures.

The diagonal prolongation to Mk of a vector bundle τ : F→M on M is defined to be the
Whitney sum of k-times the vector bundle τ with itself, namely the vector bundle τ [k] : Fk =

F×
(k)
· · ·×F %→Mk =M×

(k)
· · ·×M, understood as a vector bundle over Mk in the natural way,

i.e.

τ [k]( f(1), . . . , f(k)) = (τ( f(1)), . . . ,τ( f(k))) , ∀f(1), . . . , f(k) ∈ F ,

and

Fk
(x(1),...,x(k)) = Fx(1) ⊕ · · ·⊕Fx(k) , ∀(x(1), . . . ,x(k)) ∈Mk .
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Every section e :M→ F of the vector bundle τ has a natural diagonal prolongation to a
section e[k] of the vector bundle τ [k] given by

e[k](x(1), . . . ,x(k)) = e(x(1))+ · · ·+ e(x(k)) , ∀(x(1), . . . ,x(k)) ∈Mk.

The diagonal prolongation of a function f ∈ C∞(M) to Mk is the function defined as

f [k](x(1), . . . ,x(k)) = f(x(1))+ . . .+ f(x(k)) .

Consider also the sections e( j) of τ [k], where j ∈ {1, . . . ,n} and e is a section of τ , given by

e( j)(x(1), . . . ,x(k)) = 0+ · · ·+ e(x( j))+ · · ·+ 0 , ∀(x(1), . . . ,x(k)) ∈Mk . (6.1)

If {e1, . . . ,er} is a basis of local sections of the vector bundle τ , then e( j)i , with j = 1, . . . ,k and
i = 1, . . . ,r, is a basis of local sections of τ [k].

Due to the obvious canonical isomorphisms

(TM)[k] ≃ TMk and (T∗M)[k] ≃ T∗Mk ,

the diagonal prolongation X[k] of a vector field X ∈ X(M) can be understood as a vector field
X̃[k] on Mk, and the diagonal prolongation, α[k], of a one-form α on M can be understood as
a one-form α̃[k] on Mk. If k is assumed to be fixed, we will simply write X̃ and α̃ for their
diagonal prolongations.

The proofs of proposition 6.1, its corollaries 6.2 and 6.3, and proposition 6.4 below are
straightforward as they rely, almost entirely, on the definition of diagonal prolongations.
Anyhow, as Jacobi manifolds with a non-vanishing Reeb vector field give rise to a Dirac mani-
fold, they can also be considered as slight modifications of the results given for Dirac structures
in [23].

Proposition 6.1. Let (M,Λ,E) be a Jacobi manifold with bracket {·, ·}Λ,E. Let X and f be a
vector field and a function on M, respectively. Then,

(a) (Mk,Λ[k],E[k]) is a Jacobi manifold for every k ∈ N.
(b) If f is a Hamiltonian function for a Hamiltonian vector field X relative to (M,Λ,E), its

diagonal prolongation f [k] to Mk is a Hamiltonian function of the diagonal prolongation,
X[k], to Mk with respect to (Mk,Λ[k],E[k]).

(c) If f ∈ Cas(M,Λ,E), then f [k] ∈ Cas(Mk,Λ[k],E[k]).
(d) The map λ : (C∞(M),{·, ·}Λ,E) ∋ f %→ f [k] ∈ (C∞(Mk),{·, ·}Λ[k],E[k]) is an injective Lie

algebra morphism.

Corollary 6.2. Let h1, . . . ,hr :M→ R be a family of functions on a Jacobi manifold (M,Λ,E)
spanning a finite-dimensional real Lie algebra of functions with respect to the Lie bracket
{·, ·}Λ,E. Then, their diagonal prolongations to Mk, h̃1, . . . , h̃r, close an isomorphic Lie
algebra of functions with respect to the Lie bracket {·, ·}Λ,E induced by the Jacobi manifold
(Mk,Λ[k],E[k]).

Corollary 6.3. Let (M,Λ,E,X) be a Jacobi–Lie system that admits a Jacobi–Lie Hamiltonian
system (M,Λ,E,h). Then, (Mk,Λ[k],E[k],X[k]) is a Jacobi–Lie system admitting a Jacobi–Lie
Hamiltonian system (Mk,Λ[k],E[k],h[k]), where h[k]t = h̃[k]t is the diagonal prolongation of ht to
Mk.

Proposition 6.4. If X be a system possessing a time-independent constant of the motion f and
Y is a time-independent Lie symmetry of X, then:

1. The diagonal prolongation f [k] is a time-independent constant of the motion for X[k].
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2. The vector field Y[k] is a time-independent Lie symmetry of X[k].
3. If h is a time-independent constant of the motion for X[k], then Y[k]h is another time-
independent constant of the motion for X[k].

Proposition 6.5. The diagonal prolongation to Mk of a Jacobi–Lie system (M,Λ,E,X) is a
Jacobi–Lie system (Mk,Λ[k],E[k],X[k]).

Note that the diagonal prolongation of a contact Lie system do not need to be a contact Lie
system as it may not be defined on an odd-dimensional manifold.

For the sake of completeness, let us prove the following result.

Proposition 6.6. Let (M,Λ,E,X) be a Jacobi–Lie system possessing a Jacobi–Lie
Hamiltonian system (M,Λ,E,h). A function f ∈ C∞(M) is a constant of the motion for X if
and only if it commutes with all the elements of Lie({ht}t∈R,{·, ·}).

Proof. The function f is a constant of the motion for X if

0= Xt f = {ht, f} , ∀t ∈ R . (6.2)

Hence,

{f,{ht,ht′}}= {{f,ht},ht′}}+ {ht,{f,ht′}} , ∀t, t′ ∈ R .

Inductively, f is shown to commute with all the elements of Lie({ht}t∈R).
Conversely, if f commutes with all Lie({ht}t∈R) relative to {·, ·}, in particular, (6.2) holds

and f is a constant of the motion of X.

The bracket for Jacobi manifolds is not, in general, a Poisson bracket. It becomes only
a Poisson bracket for good Hamiltonian functions. Nevertheless, when a Lie group action
gives rise to a momentum map, the components of the momentum map are first integrals of
R. As a consequence, the following proposition, which can be considered as an adaptation of
[23, proposition 8.4], is satisfied. Recall that if (M,Λ,E) is a Jacobi manifold, then C∞(Mk)
becomes a Lie algebra relative to the Lie bracket {·, ·}k related to Λ[k] and C∞(W∗) is a
Poisson algebra relative to the Kirillov–Kostant–Souriau bracket.

Proposition 6.7. Let (M,Λ,R,X) be a Jacobi–Lie system with an associated Jacobi–Lie
Hamiltonian system (M,Λ,R,h) such that {ht}t∈R is contained in a finite-dimensional Lie
algebra of good functions (W,{·, ·}). Let {v1, . . .vr} be a basis of linear coordinates on
W∗. Given the good momentum map J :M→W∗, the pull-back J∗C of any Casimir func-
tion C on W∗ is a constant of the motion for X. Moreover, if hi = J∗vi for i = 1, . . . ,r, and
C= C(v1, . . . ,vr), then

C

(
k∑

a=1

h1(x(a)), . . . ,
k∑

a=1

hr(x(a))

)
, (6.3)

is a constant of the motion of X[k].

The coalgebra method takes its name from the fact that it analyses the use of Poisson
coalgebras and a so-called coproduct to obtain superposition rules. In fact, the coproduct is
responsible for the form of (6.3).
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6.1. A coalgebra method example for contact Lie systems of Liouville type

Finally, let us provide an example of the coalgebra method for contact Lie systems. Let us
consider the Lie group SL(2,R) of 2× 2 matrices with determinant one and real entries, i.e.

SL(2,R) =
{(

α β
γ δ

) ∣∣∣∣ αδ−βγ = 1
}
,

and the automorphic Lie system

dg
dt

=
3∑

α=1

bα(t)XRα(g) , ∀t ∈ R , ∀g ∈ SL(2,R) , (6.4)

where b1(t),b2(t),b3(t) are arbitrary time-dependent functions. Observe that α,β,γ become a
coordinate system of SL(2,R) close to the identity matrix. The Lie algebra of right-invariant
vector fields on SL(2,R) is spanned by the vector fields

XR1 = α
∂

∂α
+β

∂

∂β
− γ

∂

∂γ
, XR2 = γ

∂

∂α
+

1+βγ

α

∂

∂β
, XR3 = α

∂

∂γ
,

and their commutation relations are

[XR1 ,X
R
2 ] =−2XR2 , [XR2 ,X

R
3 ] =−XR1 , [XR1 ,X

R
3 ] = 2XR3 .

Meanwhile, the left-invariant vector fields are spanned by

XL1 = α
∂

∂α
−β

∂

∂β
+ γ

∂

∂γ
, XL2 = α

∂

∂β
, XL3 = β

∂

∂α
+

1+βγ

α

∂

∂γ
.

Moreover,

[XL1 ,X
L
2 ] = 2XL2 , [XL2 ,X

L
3 ] = XL1 , [XL1 ,X

L
3 ] =−2XL3 . (6.5)

Consider the set of the left-invariant differential forms on SL(2,R) given by

ηL1 =
1+βγ

α
dα−βdγ , ηL2 =

β(1+βγ)

α2 dα+
1
α
dβ− β2

α
dγ , (6.6)

ηL3 =−γdα+αdγ , (6.7)

which become a basis of the space of left-invariant differential forms on SL(2,R). It is relevant
that

dηL1 = ηL2 ∧ ηL3 ⇒ dηL1 ∧ ηL1 ̸= 0 .

Hence, η1 becomes a left-invariant contact form on SL(2,R) with a Reeb vector field XL1.
Therefore, the vector fields XR1 ,X

R
2 ,X

R
3 admit the Hamiltonian functions

h1 =−ηL1 (X
R
1 ) =−1− 2βγ , h2 =−ηL1 (X

R
2 ) =− γ

α
(1+βγ) , (6.8)

h3 =−ηL1 (X
R
3 ) = αβ . (6.9)

These Hamiltonian functions satisfy the commutation relations

{h1,h2}=−2h2 , {h1,h3}= 2h3 , {h2,h3}=−h1 .

Hence, all Hamiltonian functions for the right-invariant vector fields relative to the contact
form ηL1 are first integrals of the Reeb vector field of η

L
1 , namely XL1. This can be used to obtain

the superposition rule for Lie systems on SL(2,R). Let us explain this. Let {e1,e2,e3} be a
basis of sl∗2 dual to {XL1(e),XL2(e),XL3(e)}. Given the action of SL(2,R) on itself on the left,
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whose fundamental vector fields are given by the linear space of right-invariant vector fields
on SL(2,R), one can define an associated good momentum map

J : A ∈ SL(2,R) %−→ −(1+ 2βγ)e1 − γ

α
(1+βγ)e2 +αβe3 ∈ sl∗2 .

This allows us to obtain a superposition rule using the coalgebra method and proposition 6.7.
The theory of Lie systems states that, to determine a superposition rule for a Lie system, one
has to determine the smallest k ∈ N so that the vector fields [XR1 ]

[k], [XR2 ]
[k], [XR3 ]

[k] are linearly
independent at a generic point (see [34]). Since XR1 ,X

R
2 ,X

R
3 are linearly independent at every

point of SL(2,R), it follows that k= 1. Hence, a superposition rule for (6.4) can be obtained
by deriving three common first integrals for [XR1 ]

[k+1], [XR2 ]
[k+1], [XR3 ]

[k+1], let us say I1, I2, I3,
satisfying

∂(I1, I2, I3)
∂(α,β,γ)

̸= 0 .

Standard Lie systems method, derive such functions by solving systems of PDEs [17]. Instead,
we can do it by means of contact manifolds and our coalgebra method. A good Hamiltonian
function that Poisson commutes with h1,h2,h3 is given by

C1 = 4h2(α,β,γ)h3(α,β,γ)+ h1(α,β,γ)2 ∈ C∞(SL(2,R)) ,

where α,β,γ are assumed to be functions on SL(2,R). The above is indeed the pull-back to
SL(2,R) of the famous Casimir function for sl∗2 given by 4v2v3 + v21, where {v1,v2,v3} is the
basis of sl2 with commutation relations as in (6.5) understood as coordinates on sl∗2 . Similarly,

h[2]1 =−(1+ 2βγ)− (1+ 2β′γ′) , h[2]2 =− γ

α
(1+βγ)− γ′

α′ (1+β′γ′),

h[2]3 = αβ+α′β′

become the Hamiltonian functions of

[XR1 ]
[2] = α

∂

∂α
−β

∂

∂β
+ γ

∂

∂γ
+α′ ∂

∂α′ −β′ ∂

∂β′ + γ′ ∂

∂γ′ ,

[XR2 ]
[2] = α

∂

∂β
+α′ ∂

∂β′ ,

[XR3 ]
[2] = β

∂

∂α
+

1+βγ

α

∂

∂γ
+β′ ∂

∂α′ +
1+β′γ′

α′
∂

∂γ′ .

Hence, a common first integral for [XR1 ]
[2], [XR2 ]

[2], [XR3 ]
[2] is given by

I1 = 4h[2]2 h[2]3 − (h[2]1 )2 =−4(βγα′ +α′ −αβγ′)(γα′β′ −α(β′γ′ + 1))
αα′ .

Note that this is indeed an application of (6.3) to our problem.
To obtain the remaining two first integrals for [XR1 ]

[2], [XR2 ]
[2], [XR3 ]

[2], we derive

I2 = [XL2 ]
[2]I1 =−

4(γα′ −αγ′)
(
(1+βγ)α′2 −α(α− γα′β′ +βα′γ′ +αβ′γ′)

)

αα′ ,

I3 = [XL3 ]
[2]I1

=−
4(αβ(β′γ′ + 1)− (βγ+ 1)α′β′)

(
α(β′γ′α+α− γα′β′ +βα′γ′)− (βγ+ 1)α′2)

α2α′2 .
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Since the determinant of

∂(I1, I2, I3)
∂(α,β,γ)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂I1
∂α

∂I1
∂β

∂I1
∂γ

∂I2
∂α

∂I2
∂β

∂I2
∂γ

∂I3
∂α

∂I3
∂β

∂I3
∂γ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is different from zero at a generic point in SL(2,R)× SL(2,R), the system of algebraic
equations

I1 = λ1 , I2 = λ2 , I3 = λ3 , (6.10)

allows us to obtain α,β,γ in terms of α ′,β ′,γ ′ and λ1,λ2,λ3, which gives rise to a super-
position rule. Its expression may be complicated, but can be derived using any program of
mathematical manipulation.

Anyway, there is a simpler method to obtain the superposition rule for automorphic Lie
systems in general and (6.4) in particular. Since (6.4) is an automorphic Lie system with a VG
Lie algebra of right-invariant vector fields, it is known that a superposition rule is given by the
multiplication on the right

Φ : (g,h) ∈ G×G %−→ gh ∈ G .

Since the vector fields [XL1 ]
[2], [XL2 ]

[2], [XL3 ]
[2] span a distribution of rank three on SL(2,R)×

SL(2,R), which is three-codimensional as the dimension of SL(2,R), it was proved in [20]
that the superposition rule must be unique. Hence, this superposition rule must be the one
obtained by solving the algebraic system (6.10).

The example shown in this section just depicts how the coalgebra method works for a par-
ticular example that has a known unique superposition rule. The coalgebra method for contact
Lie systems of Liouville type will be, in general, simpler to use than previous known proced-
ures to obtain superposition rules, which are based on solving systems of partial or ordinary
differential equations.

7. Conclusions and further research

This paper, introduces the notion of contact Lie system: systems of first-order differential
equations describing the integral curves of a time-dependent vector field taking values in a
finite-dimensional Lie algebra of Hamiltonian vector fields relative to a contact manifold. In
particular, we have studied families of contact Lie systems of Liouville type, i.e. those that are
invariant with respect to the flow of the Reeb vector field. We have also developed Liouville
theorems, a contact reduction, and a Gromov non-squeezing theorem for certain classes of con-
tact Lie systems. We have also studied locally automorphic contact Lie systems of Liouville
type on three-dimensional manifolds. In particular, the classification of left-invariant contact
forms on three-dimensional Lie groups has been derived, which is useful to classify auto-
morphic Lie systems of Liouville type on three-dimensional Lie groups with VG Lie algebras
given by spaces of right-invariant vector fields. To illustrate our results, we have worked out
several examples, such as the Brockett control system, the Schwarz equation, an automorphic
Lie system on SL(2,R), a quantum contact Lie system, and a non-Liouville contact Lie system.
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The reduction procedures developed by Willet [81] and Albert [3] open the door to develop
an energy-momentum method [61] for contact Lie systems, both Liouville and non-Liouville.
This will allow us to study the relative equilibria points of these systems. We also believe
that a new type of contact reduction can be achieved by interpreting contact forms in a new,
distributional, manner. This is currently being developed and will hopefully be published in a
future work.

Note that our techniques in this work are focused on Hamiltonian vector fields relative to
a contact manifold. Nevertheless, contact geometry is concerned with evolution and gradient
vector fields too [75]. It will be interesting to extend our theory to such a case as well as ana-
lysing the possible extensions ofMarsden–Weinstein reductions, energy–momentummethods,
and other theories and techniques to evolution and gradient vector fields.

Recently, the contact formulation for non-conservative mechanical systems has been gen-
eralised via the so-called k-contact [40, 42, 55], k-cocontact [69], and multicontact [27, 80]
formulations. It would be interesting to study the Lie systems whose VG Lie algebra con-
sists of Hamiltonian vector fields relative to these structures. We also plan to study the case
of Lie systems admitting a VG Lie algebra of Hamiltonian vector fields relative to a locally
conformally symplectic manifold. It would also be interesting to classify contact Lie systems
possessing a transitive primitive VG Lie algebra [72, 73].
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