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ABSTRACT
This paper provides a new geometric framework to describe non-conservative field theories with explicit dependence on the space–time
coordinates by combining the k-cosymplectic and k-contact formulations. This geometric framework, the k-cocontact geometry, permits the
development of Hamiltonian and Lagrangian formalisms for these field theories. We also compare this new formulation in the autonomous
case with the previous k-contact formalism. To illustrate the theory, we study the nonlinear damped wave equation with external time-
dependent forcing.
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I. INTRODUCTION
During the second half of the 20th century, geometric methods have been widely applied to mechanics and field theory with the aim of

providing geometric descriptions of a large variety of systems in applied mathematics, physics, engineering, etc. Some of the most frequent
geometric structures involved in geometric mechanics and field theory are symplectic, multisymplectic, or k-symplectic manifolds (see, for
instance, Refs. 1–10 and references therein). In general, all these geometric methods are applied to Lagrangian and Hamiltonian conservative
systems, that is, without damping.

In recent years, there has been a growing interest in non-conservative systems. In particular, contact geometry11–13 has been used to
study mechanical systems with dissipation.14–19 This has many applications in thermodynamics,20,21 quantum mechanics,22 circuit theory,23

and control theory24 among others.25–30 Recently, contact mechanics have been generalized in order to deal with time-dependent contact
systems.31,32 It is worth pointing out that contact geometry allows us to study more systems than just dissipative ones.33 In recent years, a
generalization of both contact and k-symplectic structures was devised to describe autonomous field theories with damping34–36 in both the
Hamiltonian and Lagrangian formulations.

The main goal of this paper is to extend the k-contact formulation to non-autonomous field theories by combining it with k-cosymplectic
geometry.37,38 This leads to the definition of a k-cocontact structure as a couple of families of k differential one-forms: the first family accounting
for the space–time coordinates, and the other one encoding the dampings or dissipations inspired by the contact formulation. It is worth
noting that the number of independent variables ina the system coincides with the number of “dissipation coordinates.” This new geometry
enables us to introduce the notion of a k-cocontact Hamiltonian system as a k-cocontact manifold together with a Hamiltonian function.
With these elements, we can state the k-cocontact Hamilton equations, which indeed add dissipation terms to the well-known Hamiltonian
field equations.6

In addition, we also generalize the Lagrangian formulation of field theories to consider non-autonomous non-conservative ones. In this
new formalism, the phase bundle is M = Rk ×⊕k TQ ×Rk, where the direct sum has to be understood as a fibered sum of vector bundles,
with adapted coordinates (tα, qi, vi

α, zα). Then, given a Lagrangian function L : M → R, we define a family ηα
L of one-forms which, when

L is regular, constitute along with the forms dtα a k-cocontact structure on M. Then, the k-cocontact Lagrangian field equations are the
k-cocontact Hamiltonian field equations for the Lagrangian energy. When written in coordinates, they are the Euler–Lagrange equations
with some additional damping terms. It is worth pointing out that the field equations obtained via the k-contact and k-cocontact formalisms
coincide with the ones obtained by generalizing the Herglotz variational principle39 to the case of field theories.40

We also compare the k-cocontact formalism introduced in this work in the autonomous case with the previous k-contact formalism and
see that they are partially equivalent, in the same way that autonomous k-cosymplectic systems are closely related to k-symplectic systems.6
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Finally, we apply this formalism to the nonlinear damped wave equation with a time-dependent external force, both in the Hamiltonian and
Lagrangian formulations.

The structure of the paper is as follows: in Sec. II, we provide a review of the k-contact formalism for non-conservative autonomous
field theories. In particular, we provide the main results on k-contact geometry and a brief description of the Hamiltonian and Lagrangian
formalisms. Section III is devoted to the introduction of the notion of k-cocontact structure and the study of its geometry. More precisely, we
prove the existence of two families of Reeb vector fields and the existence of two types of special sets of coordinates: adapted coordinates and,
by adding an extra hypothesis, Darboux coordinates.

In Sec. IV, we develop a Hamiltonian formalism for non-autonomous field theories with damping, generalizing the De Donder–Weyl
formulation for field theories. We provide field equations both for k-vector fields and integral sections, and we prove the existence (but not the
uniqueness) of solutions to these equations. We begin Sec. V by describing the geometry of the phase bundle of k-cocontact Lagrangian field
theories. We also present the field equations, generalizing the Euler–Lagrange equations, and give the conditions for a Lagrangian function to
be regular, that is, to yield a k-cocontact structure. Finally, we study a particularly interesting type of Lagrangian functions: the Lagrangians
with holonomic damping term.

Section VI is devoted to comparing the k-contact formalism introduced in Ref. 34 with the k-cocontact setting presented in this
work in the autonomous case. In order to illustrate the geometric formalism introduced in Secs. II–VI, in Sec. VII, we study the
example of a nonlinear damped wave equation, describing all the geometric objects involved, both in the Lagrangian and Hamiltonian
formulations.

Unless otherwise stated, all maps are assumed to be C∞, and all manifolds are smooth, connected, and second countable. The sum of
crossed and repeated indices is understood. The direct sum of two vector bundles over the same base space is to be understood as the Whitney
sum of vector bundles.

II. REVIEW ON k -CONTACT SYSTEMS
In this section, we review the k-contact formalism for non-conservative field theories. In the first place, we introduce the geometric

framework: k-contact structures. Then, the Hamiltonian34 and the Lagrangian35 formalisms are presented.

A. k -contact manifolds
Consider an m-dimensional manifold M. A generalized distribution on M is a subset of D ⊂ TM such that Dx ⊂ TxM is a vector subspace

for every x ∈M. A distribution D is said to be smooth if it can be locally spanned by a family of vector fields, and regular if it is smooth and of
locally constant rank. A codistribution on M is a subset of C ⊂ T∗M such that Cx ⊂ T∗x M is a vector subspace for every x ∈M.

Given a distribution D, the anihilator D○ of D is a codistribution. If D is not regular, D○ may not be smooth. Using the usual identification
E∗∗ = E of finite-dimensional linear algebra, it is clear that (D○)○ = D.

A differential one-form η ∈ �1(M) generates a smooth codistribution, denoted by �η� ⊂ T∗M. This codistribution has rank 1 at every
point where η does not vanish. Its annihilator is a distribution �η�○ ⊂ TM that can be described as the kernel of the linear vector bundle
morphism η̂ : TM →M ×R defined by η, where TM and M ×R are understood as vector bundles over M. This codistribution has corank 1
at every point where η does not vanish.

In the same way, every two-form ω ∈ �2(M) induces a linear morphism ω̂ : TM → T∗M, defined as ω̂(v) = i(v)ω. The kernel of this
morphism ω̂ is a distribution ker ω̂ ⊂ TM.

Given a family of k differential one-forms η1, . . . , ηk ∈ �1(M), we will denote

● C C = �η1, . . . , ηk� ⊂ T∗M.
● DC = �C C�○ = ker η̂1 ∩ ⋅ ⋅ ⋅ ∩ ker η̂k ⊂ TM.

● DR = ker �dη1 ∩ ⋅ ⋅ ⋅ ∩ ker �dηk ⊂ TM.● CR = �DR�○ ⊂ T∗M.

With the preceding notations, a k-contact structure on a manifold M is a family of k differential one-forms η1, . . . , ηk ∈ �1(M) such
that D C ⊂ TM is a regular distribution of corank k, DR ⊂ TM is a regular distribution of rank k and D C ∩DR = {0}. We call C C the contact
codistribution, D C the contact distribution, DR the Reeb distribution, and CR the Reeb codistribution. A manifold M endowed with a k-contact
structure η1, . . . , ηk ∈ �1(M) is a k-contact manifold.

Remark 2.1. In the particular case k = 1, a 1-contact structure is given by a one-form η. In this case, we recover the notion of a contact
manifold.17,18

Given a k-contact manifold (M, ηα), the Reeb distribution DR is involutive and, therefore, integrable, and there exists a unique family of
k vector fields Rα ∈ X(M), called Reeb vector fields of M, such that i(Rα)ηβ = δβ

α and i(Rα)dηβ = 0. The Reeb vector fields commute and span
the Reeb distribution DR = �R1, . . . , Rk�.
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Example 2.2 (Canonical k-contact structure). Consider k ≥ 1 and let Q be a smooth manifold. The manifold product M = ⊕kT∗Q ×Rk has
a canonical k-contact structure given by the one-forms η1, . . . , ηk ∈ �1(M) defined as

ηα = dzα − θα,

where (z1, . . . , zk) are the canonical coordinates of Rk and θα is the pull-back of the Liouville one-form θ of the cotangent bundle T∗Q with
respect to the projection prα : M → T∗Q to the α-th component. Take coordinates (qi) on Q. Then, M has natural coordinates (qi, pα

i , zα). Using
these coordinates, we have

ηα = dzα − pα
i dqi, DR = � @

@z1 , . . . ,
@

@zk �, Rα = @

@zα .

Example 2.3 (Contactification of a k-symplectic manifold). Consider a k-symplectic manifold (P, ωα) such that ωα = −dθα and the product
manifold M = P ×Rk. Let (zα) be the Cartesian coordinates of Rk and denote also by θα the pull-back of θα to the product manifold M. Consider
the one-forms ηα = dzα − θα ∈ �1(M).

Then, (M, ηα) is a k-contact manifold because C C = �η1, . . . , ηk� has rank k, dηα = −dθα, and DR = �α ker �dθα = �@�@z1, . . . ,@�@zk� has
rank k since (P, ωα) is k-symplectic, and the last condition is immediate.

Notice that the so-called canonical k-contact structure described in Example 2.2 is just the contactification of the k-symplectic manifold
P = ⊕kT∗Q.

Theorem 2.4 (k-contact Darboux Theorem). Consider a k-contact manifold (M, ηα) of dimension dim M = n + kn + k such that there
exists an integrable subdistribution V of D C with rankV = nk. Then, around every point of M there exists a local chart (U, qi, pα

i , zα), 1 ≤ α ≤ k,
where 1 ≤ i ≤ n, such that

ηα�U = dzα − pα
i dqi, DR�U = �Rα = @

@zα �, V�U = � @

@pα
i
�.

These coordinates are called the Darboux coordinates of the k-contact manifold (M, ηα).

B. Hamiltonian formalism for k -contact systems
The geometric setting introduced in Sec. II A allows us to introduce the notion of a k-contact Hamiltonian system.34

Definition 2.5. A k-contact Hamiltonian system is a family (M, ηα, h), where (M, ηα) is a k-contact manifold and h∈ C∞(M) is called a
Hamiltonian function. Consider a map ψ : D ⊂ Rk →M. The k-contact Hamilton–De Donder–Weyl equations for the map ψ are

�������
i(ψ′α)dηα = �dh − (LRα h)ηα� ○ ψ,
i(ψ′α)ηα = −h ○ ψ,

(1)

where ψ′ : Rk →�kTM is the canonical lift of ψ to�kTM.

In Darboux coordinates, if the map ψ has the local expression ψ(t) = (qi(t), pα
i (t), zα(t)), Eq. (1) read

�������������������������

@qi

@tα = @h
@pα

i
○ ψ,

@pα
i

@tα = −� @h
@qi + pα

i
@h
@zα � ○ ψ,

@zα

@tα = �pα
i
@h
@pα

i
− h� ○ ψ.

(2)

Definition 2.6. Consider a k-contact Hamiltonian system (M, ηα, h) and a k-vector field X = (Xα) ∈ Xk(M). The k-contact Hamilton–De
Donder–Weyl equations for the k-vector field X are

�������
i(Xα)dηα = dh − (LRα h)ηα,
i(Xα)ηα = −h.

(3)
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A k-vector field solution to these equations is a k-contact Hamiltonian k-vector field.

Proposition 2.7. The k-contact Hamilton–De Donder–Weyl equations (3) admit solutions. They are not unique if k > 1.

Consider a k-vector field X = (X1, . . . , Xk) ∈ Xk(M) with local expression in Darboux coordinates,

Xα = (Xα)i @

@qi + (Xα)β
i
@

@pβ
i

+ (Xα)β @

@zβ .

Then, Eq. (3) yields the conditions �����������������������

(Xα)i = @h
@pα

i
,

(Xα)α
i = −� @h

@qi + pα
i
@h
@zα �,

(Xα)α = pα
i
@h
@pα

i
− h.

Proposition 2.8. Consider an integrable k-vector field X ∈ Xk(M). Then, every integral section ψ : D ⊂ Rk →M of X satisfies the k-contact
Hamilton–De Donder–Weyl equations (1) if, and only if, X is a solution to (3) .

Proposition 2.9. The k-contact Hamilton–De Donder–Weyl equations (3) are equivalent to

�������
LXα ηα = −(LRα h)ηα,
i(Xα)ηα = −h.

C. Lagrangian formalism for k -contact systems
The Hamiltonian formalism presented in Sec. II B has a Lagrangian counterpart. Consider the phase bundle ⊕k TQ ×Rk endowed with

adapted coordinates (qi, vi
α, zα) with the usual canonical structures: the Liouville vector field � = vi

α
@

@vi
α

and the canonical k-tangent structure

Jα = @
@vi

α
⊗ dqi (see Ref. 35 for details). A k-vector field X = (Xα) ∈ Xk(⊕k TQ ×Rk) is a second-order partial differential equation (SOPDE) if

Jα(Xα) = �.
Given a Lagrangian function L : ⊕k TQ ×R→ R, the Lagrangian energy associated with the Lagrangian L is the function EL = �(L) − L,

and the contact one-forms ηα
L ∈ �1(⊕k TQ ×Rk) associated with L are given by ηα

L = dzα − θα
L, where θα

L = tJα ○ dL.
The Lagrangian L is regular, namely, @2L

@vi
α@v

j
β

is non-degenerate, if and only if the contact one-forms ηα
L define a k-contact structure on

⊕k TQ ×Rk. Therefore, we can consider the k-contact Hamiltonian system (⊕k TQ ×Rk, ηα
L, EL), whose corresponding field equations read

�������������

@

@tα � @L
@vi

α
○ ψ� = � @L

@qi + @L
@zα

@L
@vi

α
� ○ ψ,

@(zα ○ ψ)
@tα = L ○ ψ,

and are called k-contact Euler–Lagrange equations (for more details on the k-contact Lagrangian formulation, see Refs. 35 and 41).

III. k -COCONTACT GEOMETRY
Let τ1, . . . , τk ∈ �1(M) be a family of closed one-forms on M, and let η1, . . . , ηk ∈ �1(M) be a family of one-forms on M. We will use the

following notations:

● C C = �η1, . . . , ηk� ⊂ T∗M.
● D C = �C C�○ = ker η̂1 ∩ ⋅ ⋅ ⋅ ∩ ker η̂k ⊂ TM.

● DR = ker �dη1 ∩ ⋅ ⋅ ⋅ ∩ ker �dηk ⊂ TM.● CR = �DR�○ ⊂ T∗M.
● C S = �τ1, . . . , τk� ⊂ T∗M.
● D S = �C S�○ = ker τ̂1 ∩ ⋅ ⋅ ⋅ ∩ ker τ̂k ⊂ TM.
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With these notations, we can define the following notion of k-cocontact structure:

Definition 3.1. A k-cocontact structure on a manifold M is a family of k closed differential one-forms τ1, . . . , τk ∈ �1(M) and a family of
k differential one-forms η1, . . . , ηk ∈ �1(M) such that, with the preceding notations,

(1) D C ⊂ TM is a regular distribution of corank k.
(2) D S ⊂ TM is a regular distribution of corank k.
(3) DR ⊂ TM is a regular distribution of rank 2k.
(4) D C ∩D S is a regular distribution of corank 2k, D C ∩DR is a regular distribution of rank k, and D S ∩DR is a regular distribution of

rank k.
(5) D C ∩DR ∩D S = {0}.

We call C C the contact codistribution, D C the contact distribution, DR the Reeb distribution, CR the Reeb codistribution, C S the space–time
codistribution, and D S the space–time distribution.

A manifold M endowed with a k-cocontact structure τ1, . . . , τk, η1, . . . , ηk ∈ �1(M) is a k-cocontact manifold.

Notice that the condition D C ∩DR ∩D S = {0} implies that

T∗M = C C ⊕ CR ⊕ C S.

Remark 3.2. In the particular case k = 1, a 1-cocontact structure is given by two one-forms τ, η, with dτ = 0. The conditions in
Definition 3.1 mean the following: (1) η ≠ 0 everywhere, (2) τ ≠ 0 everywhere, (4) τ ∧ η ≠ 0, (5) ker τ̂ ∩ ker η̂ ∩ ker d̂η = {0}, which implies
that ker d̂η has rank 0, 1, or 2, and (3) implies that ker d̂η has rank 2. Therefore, a 1-cocontact structure coincides with the cocontact structure
introduced in Ref. 31 to describe time-dependent contact mechanics.

Lemma 3.3. The Reeb distribution DR and the space–time distribution D S are involutive and, therefore, integrable.

Proof. Given X, Y two sections of DR and applying the relation

i[X,Y] =LXiY − iYLX = diXiY + iXdiY − iY diX − iY iXd,

to the closed two-form dηα, the result is zero. In the same way, one can check that D S is also involutive. �
As a consequence, the distribution DR ∩D S is also involutive and, therefore, integrable. Moreover, the distribution DR ∩D C is also

involutive and integrable. The following theorem characterizes a family of vector fields spanning the Reeb distribution DR:

Theorem 3.4. Let (M, τα, ηα) be a k-cocontact manifold. Then, there exists a unique family Rt
1, . . . , Rt

k, Rz
1, . . . , Rz

k ∈ X(M) such that

i(Rt
α)dηβ = 0, i(Rt

α)ηβ = 0, i(Rt
α)τβ = δβ

α,

i(Rz
α)dηβ = 0, i(Rz

α)ηβ = δβ
α, i(Rz

α)τβ = 0.

The vector fields Rt
α are called space–time Reeb vector fields. The vector fields Rz

α are called contact Reeb vector fields.
In addition, the Reeb vector fields commute and span the Reeb distribution introduced in Definition 3.1,

DR = �Rt
1, . . . , Rt

k, Rz
1, . . . , Rz

k�,
therefore, motivating its name.

Proof. Consider T∗M = C C ⊕ CR ⊕ C S. The family of one-forms {ηβ} is a global frame of the contact codistribution C C and the family
of one-forms {τβ} is a global frame of the space–time codistribution C S. We can find a global frame η̄ � of the Reeb codistribution CR so that(ηβ, η̄ �, τβ) is a global frame of T∗M. Let (Rz

α, Rν, Rt
α) be the corresponding dual frame of TM, where the vector fields Rz

α and Rt
α are uniquely

determined by the conditions
�ηβ, Rz

α� = δβ
α, �η̄ �, Rz

α� = 0, �τβ, Rz
α� = 0,

�ηβ, Rt
α� = 0, �η̄ �, Rt

α� = 0, �τβ, Rt
α� = δβ

α.

Notice that the relations involving the η̄ � do not depend on the choice of the one-forms η̄ �, this means that the vector fields Rz
α and Rt

α are
sections of the Reeb distribution (CR)○ = DR. This amounts to i(Rz

α)dηβ = 0 and i(Rt
α)dηβ = 0 for every α = 1, . . . , k. Since the one-forms ηβ

and τβ are globally defined, so are the vector fields Rz
α and Rt

α.
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To prove that the Reeb vector fields Rz
α, Rt

β commute, notice that

i[X,Y]ηγ = 0, i[X,Y]dηγ = 0, i[X,Y]τγ = 0,

for every X, Y ∈ �Rz
α, Rt

β�, which is a consequence of their definition. �
The following proposition proves the existence of a special set of coordinates, the so-called adapted coordinates:

Proposition 3.5. Consider a k-cocontact manifold (M, τα, ηα). Then, around every point in M, there exist local coordinates (tα, xI , zα) such
that

Rt
α = @

@tα , τα = dtα, Rz
α = @

@zα , ηα = dzα − f α
I (x J)dxI ,

where the functions f α
I only depend on the coordinates xI . These coordinates are called adapted coordinates.

Proof. Since the Reeb vector fields commute, there exists a set of local coordinates (tα, xI , zα) simultaneously straightening out the Reeb
vector fields (see Ref. 42, p. 234 for details),

Rt
α = @

@tα , Rz
α = @

@zα .

Let us write the forms τβ and ηβ using these coordinates. The conditions i(Rt
α)ηβ = 0 and i(Rz

α)ηβ = δβ
α imply that ηβ = dzβ − f β

I (tα, x J , zα)dxI .
On the other hand, we have that dηβ = dxI ∧ d f β

I . In this case, the conditions i(Rt
α)dηβ = 0 and i(Rz

α)dηβ = 0 imply that @ f β
I �@tα = 0 and that

@ f β
I �@zα = 0, and thus

ηβ = dzβ − f β
I (x J)dxI.

Repeating this process for the forms τβ, taking into account that dτβ = 0, and redefining the coordinates tα, we obtain the desired result. �
Example 3.6 (Canonical k-cocontact structure). Let Q be a smooth n-dimensional manifold with coordinates (qi) and let k ≥ 1. Consider

the product manifold M = Rk ×⊕kT∗Q ×Rk endowed with natural coordinates (tα; qi, pα
i ; zα). We have the canonical projections

Let θ be the Liouville one-form on T∗Q with local expression in natural coordinates θ = pidqi. Then, the family (τα, ηα) where τα = πα ∗
1 (dt)

with t the canonical coordinate of R and ηα = dzα − πα ∗
2 θ, is a k-cocontact structure on M. In natural coordinates,

τα = dtα, ηα = dzα − pα
i dqi.

Therefore, the Reeb vector fields are Rt
α = @�@tα and Rz

α = @�@zα.

The following theorem is an upgrade of Proposition 3.5 and states the existence of Darboux-like coordinates in a k-cocontact manifold
provided the existence of a certain subdistribution V ⊂ D C:

Theorem 3.7 (Darboux theorem for k-cocontact manifolds). Let (M, τα, ηα) be a k-cocontact manifold with dimension dim M = k + n+ kn + k such that there exists an integrable subdistribution V ⊂ D C with rankV = nk. Then, around every point of M there exist local
coordinates (tα, qi, pα

i , zα), where 1 ≤ α ≤ k and 1 ≤ i ≤ n, such that, locally,
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τα = dtα, ηα = dzα − pα
i dqi.

Using these coordinates,

DR = �Rt
α = @

@tα , Rz
α = @

@zα �, V = � @

@pα
i
�.

These coordinates are called the Darboux coordinates of the k-cocontact manifold (M, τα, ηα).
Proof. By Proposition 3.5, there exist local coordinates (tα, xI , zα) such that

Rt
α = @

@tα , τα = dtα, Rz
α = @

@zα , ηα = dzα − f α
I (x J)dxI.

Since the distribution D C ∩DR = �Rt
α = @

@tα � is involutive and, therefore, integrable, we can consider (at least locally) the quotient manifold
M̃ =M�(D C ∩DR), with the projection ρ : M → M̃ and local coordinates (xI , zα).

The one-forms ηα, the vector fields Rz
α and the distributionV can be projected to M̃, and the distribution �D C induced byD C is �D C = �Rz

α�.
It is easy to check that the manifold (M̃, η̃ α), where η̃ α are the projections of ηα to M̃, is a k-contact manifold. Since the projected

distribution Ṽ has rank nk, by Theorem 2.4, around every point there exists a local chart (Ũ; q̃ i, p̃ α
i , z̃ α) in M̃ such that

η̃ α = d z̃ α − p̃ α
i d q̃ i, Ṽ = � @

@p̃ α
i
�.

With all this in mind, in U = ρ−1(Ũ) ⊂M, we can take coordinates (tα, xI , zα) = (tα, qi, pα
i , zα), with qi = q̃ i ○ ρ, pα

i = p̃ α
i ○ ρ and zα = z̃ α ○ ρ

fulfilling the conditions of the theorem. �
Taking into account the previous theorem, we can consider the manifold introduced in Example 3.6 as the canonical model for

k-cocontact structures.

IV. HAMILTONIAN FORMALISM
This section introduces the notion of the k-cocontact Hamiltonian system and its Hamilton–De Donder–Weyl equations. The existence

of solutions to these equations is proved. We provide local expressions of the Hamilton–De Donder–Weyl equations for maps and k-vector
fields in both adapted and Darboux coordinates.

Definition 4.1. A k-cocontact Hamiltonian system is a tuple (M, τα, ηα, h), where (τα, ηα) is a k-cocontact structure on the manifold M
and h : M → R is a Hamiltonian function. Given a map ψ : D ⊂ Rk →M, the k-cocontact Hamilton–De Donder–Weyl equations for the map
ψ are

�������������

i(ψ′α)dηα = �dh − (LRt
α
h)τα − (LRz

α
h)ηα� ○ ψ,

i(ψ′α)ηα = −h ○ ψ,
i(ψ′α)τβ = δβ

α.
(4)

Now we are going to look at the expression in coordinates of the Hamilton–De Donder–Weyl equations (4).
Consider first the adapted coordinates (tα, xI , zα). In these coordinates,

Rt
α = @

@tα , τα = dtα, Rz
α = @

@zα , ηα = dzα − f α
I (x J)dxI , dηα = 1

2
ωα

IJdxI ∧ dx J ,

where ωα
IJ = @ f α

I
@x J − @ f α

J
@xI . Consider a map ψ : D ⊂ Rk →M with local expression ψ(s) = (tα(s), xI(s), zα(s)). Then,

ψ′α = �tβ, xI , zβ;
@tβ

@sα ,
@xI

@sα ,
@zβ

@sα �.
Then, the Hamilton–De Donder–Weyl equations in adapted coordinates read
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���������������������

@x J

@sα ωα
JI = � @h

@xI + @h
@zα f α

I � ○ ψ,

@zα

@sα − f α
I
@xI

@sα = −h ○ ψ,
@tα

@sβ = δα
β.

On the other hand, if the local expression in Darboux coordinates of a map ψ : D ⊂ Rk →M is ψ(r) = (tα(r), qi(r), pα
i (r), zα(r)), where

r = (r1, . . . , rk) ∈ Rk. Then, the Hamilton–De Donder–Weyl equations in Darboux coordinates read

���������������������������������

@tβ

@rα = δβ
α,

@qi

@rα = @h
@pα

i
○ ψ,

@pα
i

@rα = −� @h
@qi + pα

i
@h
@zα � ○ ψ,

@zα

@rα = �pα
i
@h
@pα

i
− h� ○ ψ.

(5)

Definition 4.2. Consider a k-cocontact Hamiltonian system (M, τα, ηα, h). The k-cocontact Hamilton–De Donder–Weyl equations for a
k-vector field X = (Xα) ∈ Xk(M) are

�������������

i(Xα)dηα = dh − (LRt
α
h)τα − (LRz

α
h)ηα,

i(Xα)ηα = −h,
i(Xα)τβ = δβ

α.
(6)

A k-vector field solution to these equations is a k-cocontact Hamiltonian k-vector field. We will denote this set of k-vector fields by Xk
ham(M).

Proposition 4.3. The k-cocontact Hamilton–De Donder–Weyl equations (6) admit solutions. They are not unique if k > 1.

Proof. Consider the bundle maps

ρ : TM →�kT∗M, σ :�kTM → T∗M,

given by

ρ(X) = (iXdη1, . . . , iXdηk), σ(X1, . . . , Xk) = iXα dηα.

These morphisms can be extended to C∞(M)-modules. Notice that ker ρ = DR is the Reeb distribution. Using the natural identification(E⊕ F)∗ = E∗ ⊕ F∗, the transposed morphism of τ is tτ = −ρ, taking into account that tdηα = −dηα.
The first Hamilton–De Donder–Weyl equation for a k-vector field X can be written as

τ ○X = dh − Rz
α(h)ηα − Rt

α(h)τα.

A sufficient condition for this linear equation to have solutions X is that the right-hand-side must be in the image of τ, that is, annihilated by
any section of DR = ker tτ . However, since

iR(dh − Rz
α(h)ηα − Rt

α(h)τα) = 0, for every R ∈ DR,

we can conclude that the first Hamilton–De Donder–Weyl has solutions. Notice that if X is a solution to the first equation, X + R, where R is
a k-vector field whose components are in DR, is also a solution. On the other hand, the second and third equations have common solutions R
whose components belong to the Reeb distribution, for instance, R = (−hRz

1 + Rt
1, Rt

2, . . . , Rt
k).
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The non-uniqueness for k > 1 is obvious. �
Consider a k-vector field X = (X1, . . . , Xk) ∈ Xk(M) with local expression in adapted coordinates

Xα = Aβ
α
@

@tβ + BI
α
@

@xI +Dβ
α
@

@zβ .

Therefore, Eq. (6) in adapted coordinates read
���������������

Aβ
α = δβ

α,

BJ
αωα

JI = @h
@xI + @h

@zα f α
I ,

Dα
α − f α

I BI
α = −h.

On the other hand, consider a k-vector field X = (X1, . . . , Xk) ∈ Xk(M) with local expression in Darboux coordinates

Xα = Aβ
α
@

@tβ + Bi
α
@

@qi + Cβ
αi

@

@pβ
i

+Dβ
α
@

@zβ .

Imposing Eq. (6), we get the conditions
�����������������������������

Aβ
α = δβ

α,

Bi
α = @h

@pα
i

,

Cα
αi = −� @h

@qi + pα
i
@h
@zα �,

Dα
α = pα

i
@h
@pα

i
− h.

Proposition 4.4. Let X ∈ Xk(M) be an integrable k-vector field. Then X is a solution to (6) if and only if every integral section of X satisfies
the k-cocontact Hamilton–De Donder–Weyl equations (4).

Proof. Recall that since X is integrable, every point of M is in the image of an integral section of X. The proposition is a direct consequence
of this fact and of Eqs. (4) and (6). �

It is worth noting that, as in the k-symplectic and k-contact cases, Eqs. (4) and (6) are not completely equivalent since a solution to (4)
may not be an integral section of an integrable k-vector field X solution to Eq. (6).

The following proposition provides an alternative way of writing the k-cocontact Hamilton–De Donder–Weyl equations for k-vector
fields:

Proposition 4.5. The k-cocontact Hamilton–De Donder–Weyl equations (6) are equivalent to

�������������

LXα ηα = −(LRt
α
h)τα − (LRz

α
h)ηα,

i(Xα)ηα = −h,
i(Xα)τβ = δβ

α.

V. LAGRANGIAN FORMALISM
In this section, we devise the Lagrangian counterpart of the formulations introduced in Sec. IV. We begin by introducing the geo-

metric structures of the phase bundle and defining the notion of a second-order partial differential equation. In second place, we develop
the Lagrangian formalism and introduce the k-cocontact Euler–Lagrange equations as the Hamilton–De Donder–Weyl of a k-cocontact
Lagrangian system.

A. Geometry of the phase bundle
The phase space for the Lagrangian counterpart of the k-cocontact formalism will be the product bundle M = Rk ×⊕k TQ ×Rk endowed

with natural coordinates (tα, qi, vi
α, zα). We have the natural projections
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τα
1 : M → R, τα

1(t1, . . . , tk, vq1, . . . , vqk, z1, . . . , zk) = tα,

τ2 : M → ⊕k TQ, τ2(t1, . . . , tk, vq1, . . . , vqk, z1, . . . , zk) = (vq1, . . . , vqk),
τα

2 : M → TQ, τα
2(t1, . . . , tk, vq1, . . . , vqk, z1, . . . , zk) = vqα,

τα : ⊕k TQ→ TQ, τα(t1, . . . , tk, vq1, . . . , vqk, z1, . . . , zk) = vqα,

τα
3 : M → R, τα

3(t1, . . . , tk, vq1, . . . , vqk, z1, . . . , zk) = zα,

τ0 : M → Rk ×Q ×Rk, τ0(t1, . . . , tk, vq1, . . . , vqk, z1, . . . , zk) = (t1, . . . , tk, q, z1, . . . , zk),
which can be summarized in the following diagram:

Since the bundle τ2 : Rk ×⊕k TQ ×Rk → ⊕k TQ is trivial, the canonical structures in ⊕kTQ, namely, the canonical k-tangent structure(Jα) and the Liouville vector field �, can be extended to Rk ×⊕k TQ ×Rk in a natural way. Their local expressions remain the same,

Jα = @

@vi
α
⊗ dqi, � = vi

α
@

@vi
α

.

These canonical structures can be used to extend the notion of SOPDE (second-order partial differential equation) to the bundle Rk ×⊕k

TQ ×Rk:

Definition 5.1. A k-vector field Γ = (Γα) ∈ Xk(Rk ×⊕k TQ ×Rk) is a second-order partial differential equation or SOPDE if Jα(Γα) = �.

A straightforward computation shows that the local expression of a SOPDE reads

Γα = Aβ
α
@

@tβ + vi
α
@

@qi + Ci
αβ

@

@vi
β
+Dβ

α
@

@zβ .

Definition 5.2. Consider a map ψ : Rk → Rk ×Q ×Rk with ψ = (tα, ϕ, zα), where ϕ : Rk → Q. The first prolongation of ψ to Rk ×⊕k TQ×Rk is the map ψ′ : Rk → Rk ×⊕k TQ ×Rk given by ψ′ = (tα, ϕ′, zα), where ϕ′ is the first prolongation of ϕ to ⊕kTQ. The map ψ′ is said to
be holonomic.

Let ψ : Rk → Rk ×Q ×Rk be a map with local expression ψ(r) = (tα(r), qi(r), zα(r)), where r ∈ Rk. Then, its first prolongation has local
expression

ψ′(r) = �tα(r), qi(r), @qi

@rα (r), zα(r)�.

Proposition 5.3. An integrable k-vector field Γ ∈ Xk(Rk ×⊕k TQ ×Rk) is a SOPDE if and only if its integral sections areholonomic .

It is important to point out that the product manifold Rk ×⊕k TQ ×Rk does not have a canonical k-cocontact structure, in contrast to
what happens to the manifold Rk ×⊕kT∗Q ×Rk, where we do have a natural k-cocontact structure as seen in Example 3.6. In what follows,
we will show that, in favorable cases, given a Lagrangian function L defined on Rk ×⊕k TQ ×Rk one can build up a k-cocontact structure.

Definition 5.4. A Lagrangian function on Rk ×⊕k TQ ×Rk is a function L : Rk ×⊕k TQ ×Rk → R.

● The Lagrangian energy associated with the Lagrangian function L is the function EL∈ C∞(Rk ×⊕k TQ ×Rk) given by EL = �(L) − L.● The Cartan forms associated with the Lagrangian L are
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θα
L = tJα ○ dL ∈ �1�Rk ×⊕k TQ ×Rk�, ωα

L = −dθα
L ∈ �2�Rk ×⊕k TQ ×Rk�,

where tJα denotes the transpose of Jα.● The contact forms associated with the Lagrangian L are

ηα
L = dzα − θα

L ∈ �1�Rk ×⊕k TQ ×Rk�.
● The couple (Rk ×⊕k TQ ×Rk, L) is a k-cocontact Lagrangian system.

It is clear that dηα
L = ωα

L. The local expressions in natural coordinates (tα, qi, vi
α, zα) of the objects introduced in the previous

definition are

EL = vi
α
@L
@vi

α
− L,

θα
L = @L

@vi
α

dqi,

ηα
L = dzα − @L

@vi
α

dqi,

dηα
L = @2L

@tβ@vi
α

dqi ∧ dtβ + @2L
@qj@vi

α
dqi ∧ dqj + @2L

@vj
β@v

i
α

dqi ∧ dvj
β + @2L

@zβ@vi
α

dqi ∧ dzβ.

Before introducing the Legendre map associated with a Lagrangian function, let us recall the notion of a fiber derivative. Given two vector
bundles E, F over the same base manifold B and a bundle map f : E → F, the fiber derivative of f is the map F f : E → Hom(E, F) ≅ F ⊗ E∗
obtained by restricting the map f to the fibers fb : Eb → Fb and computing the usual derivative: F f (eb) = D f b(eb). If the second vector
bundle is trivial and has rank 1, namely, for a function f : E → R, then F f : E → E∗. This fiber derivative has a fiber derivative F(F f )= F 2 f : E→ E∗ ⊗ E∗, called the fiber Hessian of f . For every eb ∈ Eb ⊂ E, F 2 f (eb) is a symmetric bilinear form on Eb. The fiber derivative
F f is a local diffeomorphism at a point e ∈ E if and only if the Hessian F 2 f (e) is non-degenerate (see Ref. 43 for more details).

Definition 5.5. Given a Lagrangian function L : Rk ×⊕k TQ ×Rk → R, the Legendre map of L is its fiber derivative as a function on the
vector bundle τ0 : Rk ×⊕k TQ ×Rk → Rk ×Q ×Rk. Namely, the Legendre map of a Lagrangian function L : Rk ×⊕k TQ ×Rk → R is the map

FL : Rk ×⊕k TQ ×Rk → Rk ×⊕kT∗Q ×Rk,

given by
FL(t, vq1, . . . , vqk, z) = (t, FL(t, ⋅, z)(vq1, . . . , vqk), z),

where FL(t, ⋅, z) denotes the Legendre map of the Lagrangian function with t and z freezed.

In natural coordinates (tα, qi, vi
α, zα), the Legendre map has local expression

FL(tα, qi, vi
α, zα) = �tα, qi,

@L
@vi

α
, zα�.

Proposition 5.6. The Cartan forms satisfy

θα
L = (πα

2 ○ FL)∗θ, ωα
L = (πα

2 ○ FL)∗ω,

where θ ∈ �1(T∗Q) and ω = −dθ ∈ �2(T∗Q) are the Liouville and symplectic canonical forms of the cotangent bundle T∗Q.

The regularity of the Legendre map characterizes the Lagrangian functions that yield k-cocontact structures on the phase bundle
Rk ×⊕k TQ ×Rk.

Proposition 5.7. Consider a Lagrangian function L : Rk ×⊕k TQ ×Rk → R. The following are equivalent:

(1) The Legendre map FL is a local diffeomorphism.
(2) The fiber Hessian of the Lagrangian L, namely, the map

F 2L : Rk ×⊕k TQ ×Rk → �Rk ×⊕kT∗Q ×Rk�⊗ �Rk ×⊕kT∗Q ×Rk�,
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is everywhere nondegenerate, where the tensor product is of vector bundles over Rk ×Q ×Rk.
(3) The family (τα = dtα, ηα

L) is a k-cocontact structure on Rk ×⊕k TQ ×Rk.

Proof. Taking natural coordinates (tα, qi, vi
α, zα), we have

F 2L(tα, qi, vi
α, zα) = �tα, qi, Wαβ

ij , zα�, where Wαβ
ij = ��

@2L
@vi

α@v
j
β

�
�.

The conditions in the proposition mean that the matrix W = (Wαβ
ij ) is everywhere nonsingular. �

Definition 5.8. A Lagrangian function L : Rk ×⊕k TQ ×Rk → R is said to be regular if the equivalent statements in Proposition 5.7 hold.
Otherwise L is said to be singular. In addition, if the Legendre map FL is a global diffeomorphism, L is a hyperregular Lagrangian.

Let (Rk ×⊕k TQ ×Rk, L) be a regular k-cocontact Lagrangian system. By Theorem 3.4, the Reeb vector fields (Rt
L)α, (Rz

L)α ∈ X(Rk ×⊕k TQ ×Rk) are uniquely given by the relations

i�(Rt
L)α�dηβ

L = 0, i�(Rt
L)α�ηβ

L = 0, i�(Rt
L)α�dtβ = δβ

α,

i�(Rz
L)α�dηβ

L = 0, i�(Rz
L)α�ηβ

L = δβ
α, i�(Rz

L)α�dtβ = 0.

The local expressions of the Reeb vector fields are

(Rt
L)α = @

@tα −Wji
γβ

@2L
@tα@vj

γ

@

@vi
β

,

(Rz
L)α = @

@zα −Wji
γβ

@2L
@zα@vj

γ

@

@vi
β

,

where Wij
αβ is inverse of the Hessian matrix Wαβ

ij = � @2L
@vi

α@v
j
β
�, namely,

Wij
αβ

@2L
@vj

β@v
k
γ
= δi

kδγ
α.

B. k -cocontact Euler–Lagrange equations
We have proved in Sec. V A that every regular k-cocontact Lagrangian system (Rk ×⊕k TQ ×Rk, L) yields the k-cocontact Hamiltonian

system (Rk ×⊕k TQ ×Rk, τα = dtα, ηα, EL). Taking this into account, we can define,

Definition 5.9. Let (Rk ×⊕k TQ ×Rk, L) be a k-cocontact Lagrangian system. The k-cocontact Euler–Lagrange equations for a holonomic
map ψ : Rk → Rk ×⊕k TQ ×Rk are

�������������

i(ψ′α)dηα
L = �dEL − (L(Rt

L)α
EL)dtα − (L(Rz

L)α EL)ηα
L� ○ ψ,

i(ψ′α)ηα
L = −EL ○ ψ,

i(ψ′α)dtβ = δβ
α.

(7)

The k-cocontact Lagrangian equations for a k-vector field X = (Xα) ∈ Xk(Rk ×⊕k TQ ×Rk) are

�������������

i(Xα)dηα
L = dEL − (L(Rt

L)α
EL)dtα − (L(Rz

L)α EL)ηα
L,

i(Xα)ηα
L = −EL,

i(Xα)dtβ = δβ
α.

(8)

A k-vector field X solution to Eq. (8) is said to be a k-cocontact Lagrangian vector field.
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The next proposition states that, if the Lagrangian L is regular, the Lagrangian Eq. (8) always has solutions, although they are not unique
in general. It is a direct translation of Proposition 2.7 into the Lagrangian language.

Proposition 5.10. Consider a regular k-cocontact Lagrangian system (Rk ×⊕k TQ ×Rk, L). Then, the k-cocontact Lagrangian Eq. (8)
admits solutions. They are not unique if k > 1.

Consider a map ψ : Rk → Rk ×⊕k TQ ×Rk with local expression in natural coordinates ψ(r) = (tα(r), qi(r), vi
α(r), zα(r)), where

r = (r1, . . . , rk) ∈ Rk. Then, Eq. (7) for the map ψ read

���������������������

@tβ

@rα = δβ
α,

@

@rα � @L
@vi

α
○ ψ� = � @L

@qi + @L
@zα

@L
@vi

α
� ○ ψ,

@(zα)
@rα = L ○ ψ.

(9)

For a k-vector field X = (Xα) ∈ Xk(Rk ×⊕k TQ ×Rk), with local expression in natural coordinates

Xα = Aβ
α
@

@tβ + Bi
α
@

@qi + Ci
αβ

@

@vi
β
+Dβ

α
@

@zβ .

Equation (8) read

0 = Aβ
α − δβ

α, (10)

0 = �Bj
α − v j

α� @2L
@v j

α@zβ , (11)

0 = �Bj
α − v j

α� @2L
@v j

α@tβ , (12)

0 = �Bj
α − v j

α� @2L
@vi

β@v
j
α

, (13)

0 = �Bj
α − v j

α� @2L
@qi@v j

α
+ @L
@qi − @2L

@tα@vi
α
− @2L
@qj@vi

α
Bj

α

− @2L
@vj

β@v
i
α

Cj
αβ − @2L

@zβ@vi
α

Dβ
α + @L

@zα
@L
@vi

α
, (14)

0 = L + @L
@vi

α
�Bi

α − vi
α� −Dα

α. (15)

If the Lagrangian function L is regular, Eq. (13) yield the conditions Bi
α = vi

α, namely, the k-vector field X has to be a SOPDE. In this case,
Eqs. (11) and (12) hold identically and Eqs. (10), (14), and (15) yield

Aβ
α = δβ

α, (16)

@L
@qi + @L

@zα
@L
@vi

α
= @2L
@tα@vi

α
+ @2L
@qj@vi

α
v j

α + @2L
@vj

β@v
i
α

Cj
αβ + @2L

@zβ@vi
α

Dβ
α, (17)

Dα
α = L. (18)

If the SOPDE X is integrable, Eqs. (16)–(18) are the Euler–Lagrange Eq. (9) for its integral maps. Therefore, we have proven the following:

Proposition 5.11. Let L : Rk ×⊕k TQ ×Rk → R be a regular Lagrangian and consider a Lagrangian k-vector field X, namely, a solu-
tion to Eq. (8). Then X is a SOPDE and if, in addition, X is integrable, its integral sections are solutions to the k-cocontact Euler–Lagrange
equations (7).

The SOPDE X is called an Euler–Lagrange k-vector field associated with the Lagrangian function L.

Remark 5.12. If the Lagrangian function L is regular or hyperregular, the Legendre map FL is a (local) diffeomorphism between
Rk ×⊕k TQ ×Rk and Rk ×⊕kT∗Q ×Rk such that FL∗ηα = ηα

L. In addition, there exists, at least locally, a function h ∈ C∞(Rk ×⊕kT∗Q ×Rk)
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such that h ○ FL = EL. Then, we have the k-cocontact Hamiltonian system (Rk ×⊕kT∗Q ×Rk, ηα, h), for which FL∗(Rt
L)α = Rt

α and
FL∗(Rz

L)α = Rz
α. If Γ is an Euler–Lagrange k-vector field associated to the Lagrangian function L in Rk ×⊕k TQ ×Rk, we have that the k-vector

field X = FL∗Γ is a k-cocontact Hamiltonian k-vector field associated to h in Rk ×⊕k TQ ×Rk, and conversely.

Remark 5.13. In the case k = 1, we recover the cocontact Lagrangian formalism presented in the recent paper31 for time-dependent
contact Lagrangian systems.

Remark 5.14. It is important to point out that the field equations obtained in this work from both the Hamiltonian and Lagrangian
formalisms coincide with those obtained by means of the so-called multicontact formalism introduced in Ref. 44 as a generalization of the
multisymplectic setting.

C. Lagrangian functions with holonomic damping term
In this section, a particular type of Lagrangian function is studied in full detail: the so-called Lagrangians with holonomic damping

term.18 This family of Lagrangians is particularly interesting since it appears in many physical examples.

Definition 5.15. A Lagrangian function with holonomic damping term in Rk ×⊕k TQ ×Rk is a function L = L + ϕ∈ C∞(Rk ×⊕k TQ×Rk), where L = τ̄∗2 L○, where τ̄2 : Rk ×⊕k TQ ×Rk → Rk ×⊕k TQ for some Lagrangian function L○ ∈ C∞(Rk ×⊕k TQ) and ϕ = τ∗0 ϕ○, for
ϕ○ ∈ C∞(Rk ×Q ×Rk).

Taking natural coordinates (tα, qi, vi
α, zα) in Rk ×⊕k TQ ×Rk, a Lagrangian with holonomic damping term has the expression

L(tα, qi, vi
α, zα) = L(tα, qi, vi

α) + ϕ(tα, qi, zα). (19)

It is clear that the momenta pα
i = @L�@vi

α defined by the Legendre map are independent of the coordinates zα, namely, one has that
@2L

@zα@vi
β
= 0 for Lagrangian functions with holonomic damping term.

Proposition 5.16. Consider the Lagrangian function with holonomic damping term L = L + ϕ. Then, its Cartan forms, contact forms,
Lagrangian energy, and Reeb vector fields read

θα
L = θα

L, ηα
L = dzα − θα

L, EL = EL − ϕ, (Rt
L )α = @

@tα , (Rz
L )α = @

@zα .

where θα
L are the Cartan one-forms of L considered (via pull-back) as one-forms on Rk ×⊕k TQ ×Rk, and EL is the energy of L as a function on

Rk ×⊕k TQ ×Rk.
The Legendre map of L, namely, FL : Rk ×⊕k TQ ×Rk → Rk ×⊕kT∗Q ×Rk, can be expressed as FL = FL × Idk

R, where FL is the
Legendre map of L. The fibered Hessians are related by F 2L(tα, vqα, zα) = F 2L(tα, vqα). Moreover, L is regular if, and only if, L is regular.

The proof of this proposition is straightforward by taking local coordinates. It is also clear that L is hyperregular if and only if L is
hyperregular. In this case, the Legendre map FL is a diffeomorphism and one can state the canonical Hamiltonian formulation for the
Lagrangian with holonomic damping term L = L + ϕ via the Legendre map.

Consider the k-cocontact Lagrangian system (Rk ×⊕k TQ ×Rk,L), where L = L + ϕ is a Lagrangian function with holonomic damping
term as in (19). Recall that the dynamical equations for k-vector fields of this system are

�������������

i(Xα)dηα
L = dEL − (L(Rt

L )α
EL)dtα − (L(Rz

L )α EL)ηα
L ,

i(Xα)ηα
L = −EL,

i(Xα)dtβ = δβ
α.

Take natural coordinates (tα, qi, vi
α, zα) in Rk ×⊕k TQ ×Rk and consider a k-vector field X = (Xα) ∈ Xk(Rk ×⊕k TQ ×Rk) with local

expression

Xα = Aβ
α
@

@tβ + Bi
α
@

@qi + Ci
αβ

@

@vi
β
+Dβ

α
@

@zβ .

Then, the second and third Lagrangian equations for the k-vector field X read

Aβ
α = δβ

α, 0 = L + @L
@vi

α
�Bi

α − vi
α� −Dα

α,
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and this is Eq. (15) for the Lagrangian function L = L + ϕ. The first Lagrangian equation for k-vector fields yields

�Bj
α − v j

α� @2L
@vi

β@v
j
α
= 0, (20)

� @2L
@qi@v j

α
− @2L
@qj@vi

α
�Bj

α − @2L
@tα@vi

α
− @2L
@qi@v j

α
v j

α − @2L
@vj

β@v
i
α

Cj
αβ = − @L

@qi − @ϕ
@qi − @ϕ

@zα
@L
@vi

α
,

which correspond to Eq. (14) for the Lagrangian L. Notice that Eq. (11) are identities since @2L
@v j

α@zβ = 0.

Finally, as in Proposition 5.11, if the Lagrangian function L is regular, namely, if L is regular, Eq. (20) implies that Bj
α = v j

α. Therefore,
the k-vector field is a SOPDE and the dynamical equations become

@tα

@rβ = δβ
α,

@zα

@rα = L,

@2L
@vj

β@v
i
α

@2qj

@rα@rβ + @2L
@qj@vi

α

@qj

@rα + @2L
@tα@vi

α
− @L
@qi = @

@rα � @L
@vi

α
� − @L

@qi = @ϕ
@qi + @ϕ

@zα
@L
@vi

α
.

These are the expressions in natural coordinates of the Euler–Lagrange Eq. (9), for the Lagrangian with holonomic damping term L = L + ϕ.

VI. k -CONTACT SYSTEMS VERSUS AUTONOMOUS k -COCONTACT SYSTEMS
In this section, we are going to compare the k-contact and k-cocontact formulations of field theories. We will work with the canonical

manifolds ⊕kT∗Q ×Rk and Rk ×⊕kT∗Q ×Rk. However, due to the Darboux theorems, the results can easily be extended to the case M and
Rk ×M being M a general k-contact manifold. These two canonical manifolds are related by the canonical projection π̄2 : Rk ×⊕kT∗Q ×Rk

→ ⊕kT∗Q ×Rk. We will denote by η̄ α and ηα the canonical contact one-forms of Rk ×⊕kT∗Q ×Rk and ⊕kT∗Q ×Rk, respectively. They are
related by the relations η̄ α = π̄∗2 ηα and have the same local expression ηα = dzα − pα

i dqi. The Reeb vector fields will be denoted by R̄z
α and Rz

α
and have local expression @�@zα.

Definition 6.1. A k-cocontact Hamiltonian system (Rk ×⊕kT∗Q ×Rk, dtα, ηα, h) is said to be autonomous if Rt
α(h) = @h�@tα = 0 for

every α = 1, . . . , k.

Notice that if a Hamiltonian function h does not depend on the variables tα, there exists a function h○∈ C∞(⊕kT∗Q ×Rk) such that
h = π̄∗2 h○.

For an autonomous k-cocontact Hamiltonian system, Eq. (6) read

�������������

i(Xα)dηα = dh − (LRz
α
h)ηα,

i(Xα)ηα = −h,
i(Xα)τβ = δβ

α.
(21)

Proposition 6.2. Every autonomous k-cocontact Hamiltonian system (Rk ×⊕kT∗Q ×Rk, h) defines a k-contact Hamiltonian system(⊕kT∗Q ×Rk, h○), where h = π̄∗2 H○, and conversely.

Theorem 6.3. Consider an autonomous k-cocontact Hamiltonian system (Rk ×⊕kT∗Q ×Rk, h) and let (⊕kT∗Q ×Rk, h○) be its asso-
ciated k-contact Hamiltonian system. Then, every section ψ̄ : Rk → Rk ×⊕kT∗Q ×Rk solution to the Hamilton–De Donder–Weyl Eq. (5) for
the system (Rk ×⊕kT∗Q ×Rk, h) defines a map ψ : Rk → ⊕kT∗Q ×Rk solution to the Hamilton–De Donder–Weyl Eq. (2) for the k-contact
Hamiltonian system (⊕kT∗Q ×Rk, h○), and conversely.

Proof. Since h = π̄∗2 h○, one has
@h
@qi = @h○

@qi ,
@h
@pα

i
= @h○
@pα

i
,

@h
@zα = @h○

@zα . (22)

Let ψ̄ : Rk → Rk ×⊕kT∗Q ×Rk be a section of the projection π̄1 : Rk ×⊕kT∗Q ×Rk → Rk, which in coordinates reads ψ̄(t)= (t, ψ̄ i(t), ψ̄α
i (t), ψ̄ α(t)) with t ∈ Rk. We can construct the map ψ = π̄2 ○ ψ̄ : Rk → ⊕kT∗Q ×Rk, which in coordinates reads ψ(t)
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= (ψi(t), ψα
i (t), ψα(t)) = (ψ̄ i(t), ψ̄α

i (t), ψ̄ α(t)). Then, if ψ̄ is a solution to the Hamilton–De Donder–Weyl Eq. (5), from (22) one obtains
that ψ is a solution to the k-contact Hamilton–De Donder–Weyl Eq. (2).

Conversely, consider a map ψ : Rk → ⊕kT∗Q ×Rk. Define ψ̄ = (IdRk , ψ) : Rk → Rk ×⊕kT∗Q ×Rk. If ψ(t) = (ψi(t), ψα
i (t), ψα(t)), then

ψ̄(t) = (t, ψ̄ i(t), ψ̄α
i (t), ψ̄ α(t)) with ψ̄ i(t) = ψi(t), ψ̄α

i (t) = ψα
i (t) and ψ̄ α(t) = ψα(t). Note that Imψ̄ = graph ψ. Therefore, if ψ is a solution

the k-contact Hamilton–De Donder–Weyl equations (2), we have that ψ̄ is a solution to the Hamilton–De Donder–Weyl equations (5). �
The following result relates the k-vector field solution to Eqs. (3) and (21). First, we have to introduce the notion of the suspension of a

vector field (see Ref. 1, p. 374 for the definition of suspension in the context of mechanics).
Let X = (X1, . . . , Xk) be a k-vector field on ⊕kT∗Q ×Rk. For every α = 1, . . . , k, let X̄α ∈ X(Rk ×⊕kT∗Q ×Rk) be the suspension of

the corresponding vector field Xα in ⊕kT∗Q ×Rk defined as follows: for every p ∈ ⊕kT∗Q ×Rk, let γα
p : R→ ⊕kT∗Q ×Rk be the integral

curve of Xα passing through p. Then, if x0 = (x1
0, . . . , xk

0) ∈ Rk, we can construct the curve γ̄α
p : Rk ×⊕kT∗Q ×Rk passing through the point

p̄ = (x0, p) ∈ Rk ×⊕kT∗Q ×Rk given by γ̄α
p̄(x) = (x1

0, . . . , xα
0 + x, . . . , xk

0; γp(x)). Then, X̄ ∈ X(Rk ×⊕kT∗Q ×Rk) is the vector field tangent to
γ̄α

p̄ at (x0, p).
In natural coordinates, if Xα has local expression

Xα = Ai
α
@

@qi + Bβ
αi

@

@pβ
i

+ Cβ
α
@

@zβ ,

one has that X̄α is locally given by

X̄α = @

@tα + Āi
α
@

@qi + B̄β
αi

@

@pβ
i

+ C̄β
α
@

@zβ = @

@tα + π̄∗2 (Ai
α) @

@qi + π̄∗2 (Bβ
αi) @

@pβ
i

+ π̄∗2 (Cβ
α) @

@zβ .

Theorem 6.4. Consider an autonomous k-cocontact Hamiltonian system (Rk ×⊕kT∗Q ×Rk, h) and let (⊕kT∗Q ×Rk, h○) be its asso-
ciated k-contact Hamiltonian system. Then, every k-vector field X ∈ Xk(⊕kT∗Q ×Rk) solution to Eq. (3) defines a k-vector field X̄ ∈ Xk(Rk

×⊕kT∗Q ×Rk) solution to Eq. (21).
In addition, X is integrable if and only if its associated X̄ is also integrable.

Proof. Let X = (X1, . . . , Xk) ∈ Xk(⊕kT∗Q ×Rk) be a solution to Eq. (3). Define X̄α ∈ X(Rk ×⊕kT∗Q ×Rk) as the suspension of the
corresponding vector field Xα ∈ X(⊕kT∗Q ×Rk).

Notice that the vector fields X̄α are π̄2-projectable, and (π̄2)∗X̄α = Xα. Therefore, we have defined a k-vector field X̄ in Rk ×⊕kT∗Q ×Rk.
Therefore, we have

iX̄α
dη̄ α − dh − (LR̄z

α
h)η̄ α = iX̄α

d(π̄∗2 ηα) − d(π̄∗2 h○) − (LRz
α
h○)(π̄∗2 ηα),

= π∗2 �i(π̄2)∗X̄α
dηα − dh○ − (LRz

α
h)ηα�,

= π∗2 �iXα dηα − dh○ − (LRz
α
h)ηα�,

= 0,

since X = (Xα) satisfies Eq. (3). It is easy to check that the other equations also hold. Therefore, X̄ = (X̄α) satisfies Eq. (21).
In addition, if ψ : Rk → ⊕kT∗Q ×Rk is an integral section of X, one has that ψ̄ : Rk → Rk ×⊕kT∗Q ×Rk such that ψ̄ = (IdRk , ψ) (see

Theorem 6.3) is an integral section of X̄.
On the other hand, if ψ̄ is an integral section of X̄, Eq. (21) hold for the map ψ̄(t) = (t, ψ̄ i(t), ψ̄α

i (t), ψ̄ α(t)). Since Āi
α = π̄∗2 (Ai

α), B̄β
αi= π∗2 (Bβ

αi), and C̄β
α = π̄∗2 (Cβ

α), this is equivalent to say that Eq. (1) hold for the map ψ(t) = (ψi(t), ψα
i (t), ψα(t)) or, equivalently, ψ is an

integral section of X. �
Notice that the converse statement of the previous theorem is not true. Actually, the k-vector fields that are solutions to the geometric

field Eq. (21) are not completely determined, and then there are k-vector fields in Rk ×⊕kT∗Q ×Rk that are not π̄2-projectable, for instance,
taking their undetermined components to be not π̄2-projectable. However, if we only consider those solutions that are integral sections of
k-vector fields solution to the geometric field equations, one can prove that every integrable k-vector field X̄ ∈ Xk(Rk ×⊕kT∗Q ×Rk) solution
to the k-cocontact Hamilton–De Donder–Weyl equations is associated with an integrable k-vector field X ∈ Xk(⊕kT∗Q ×Rk) solution to the
k-contact Hamilton–De Donder–Weyl equations.

The results presented in this section can be translated to the Lagrangian formalism when considering regular autonomous Lagrangians
(@L�@tα = 0, or equivalently, @EL�@tα = 0).
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VII. AN EXAMPLE: ONE-DIMENSIONAL NONLINEAR WAVE EQUATION WITH DAMPING
A one-dimensional nonlinear wave with an external time-dependent forcing can be modeled by the equation

utt = d
dx
� @ f
@ux
(t, ux)� − @g

@u
(t, u), (23)

where u : U ⊂ R2 → R and u(t, x), f (t, ux), and g(t, u) are smooth functions. Notice that if g(t, u) = 0 and f (t, ux) = c2u2
x�2 with c ∈ R, we

recover the usual wave equation utt = c2uxx. This equation can be obtained from the Lagrangian function L : R2 ×⊕2TR→ R45 given by

L(t, x; u, ut , ux) = 1
2

u2
t − f (t, ux) − g(t, u),

where we will assume the regularity condition @2 f
@u2

x
≠ 0. We are going to modify this Lagrangian function in order to add a damping term

proportional to ut to Eq. (23).

A. Lagrangian formalism
Consider the Lagrangian function with holonomic damping term L : R2 ×⊕2TR ×R2 given by L(t, x; u, ut , ux; zt , zx) = L(t, x; u, ut , ux)+ ϕ(x, zt), where ϕ(x, zt) = −γ(x)zt . Then, we have

L(t, x; u, ut , ux; zt , zx) = 1
2

u2
t − f (t, ux) − g(t, u) − γ(x)zt. (24)

For this Lagrangian, we have

dL = −�@ f
@t
+ @g

@t
�dt − zt @γ

@x
− @g
@u

du + utdut − @ f
@ux

dux − γ(x)dzt ,

EL = 1
2

u2
t − ux

@ f
@ux
+ f (t, ux) + g(t, u) + γ(x)zt ,

dEL = �−ux
@2 f
@t@ux

+ @ f
@t
+ @g

@t
�dt + @γ

@x
ztdx + @g

@u
du + utdut − ux

@2 f
@u2

x
dux + γ(x)dzt ,

η1
L = dzt − utdu, dη1

L = du ∧ dut ,

η2
L = dzx + @ f

@ux
du, dη2

L = @2 f
@t@ux

dt ∧ du + @2 f
@u2

x
dux ∧ du,

(Rt
L )1 = @

@t
− �@2 f

@u2
x
�−1

@2 f
@t@ux

@

@ux
, (Rt

L )2 = @

@x
, (Rz

L )1 = @

@zt , (Rz
L )2 = @

@zx .

Now, consider a 2-vector field X = (X1, X2) ∈ X2(R2 ×⊕2TR ×R2) with local expression

Xα = At
α
@

@t
+ Ax

α
@

@x
+ Bα

@

@u
+ Cαt

@

@ut
+ Cαx

@

@ux
+Dt

α
@

@zt +Dx
α
@

@zx .

For this 2-vector field, the third equation in (8) gives the conditions At
1 = 1, Ax

1 = 0, At
2 = 0, and Ax

2 = 1. We have

i(Xα)dηα
L = −B2

@2 f
@t@ux

dt + �−C1t + At
2
@2 f
@t@ux

+ C2x
@2 f
@u2

x
�du + B1dut − @2 f

@u2
x

B2dux,

and

dEL − (L(Rt
L )α

EL)dtα − (L(Rz
L )α EL)ηα

L = −ux
@2 f
@t@ux

+ �@g
@u
+ γ(x)ut�du + utdut − ux

@2 f
@u2

x
dux,

and then the first equation in (8) gives the conditions
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(B2 − ux) @2 f
@t@ux

= 0, (25)

C1t − C2x
@2 f
@u2

x
+ @g
@u
+ γ(x)ut = 0, (26)

B1 = ut , (27)

B2 = ux. (28)

Finally, the second equation in (8) yields Dt
1 +Dx

2 = L.
Notice that conditions (27) and (28) are the holonomy conditions, while (25) holds identically. Consider now an integral section ψ(r)= (t(r), x(r); u(r), ut(r), ux(r); zt(r), zx(r)) of the 2-vector field X. Then, combining Eqs. (27) and (28) into (26), we obtain the damped

nonlinear wave equation,
@2u
@t2 − d

dx
� @ f
@ux
(t, ux)� + @g

@u
(t, u) + γ(x)@u

@t
= 0.

In the particular case f (t, ux) = c2ux�2, we get

utt − c2uxx + @g
@u
(t, u) + γ(x)ut = 0.

B. Hamiltonian formalism
In order to give a Hamiltonian description of the system introduced earlier, let us consider the Legendre map associated with

the Lagrangian function L given in (24). The Legendre map associated with L is the map FL : R2 ×⊕2TR ×R2 → R2 ×⊕2T∗R ×R2

given by

FL(t, x; u, ut , ux; zt , zx) = �t, x; u, pt ≡ ut , px ≡ − @ f
@ux

; zt , zx�.
Notice that the regularity condition @2 f

@u2
x

assumed implies that the Legendre map is a local diffeomorphism and thus the Lagrangian L is

regular. In order to simplify the computations, from now on we will consider the particular case f (t, ux) = u2
x�2.

Consider then the product manifold R2 ×⊕2T∗R ×R2 equipped with local coordinates (t, x; u, pt , px; zt , zx). This manifold has a
canonical 2-cocontact structure given by

τ1 = dt, τ2 = dx, η1 = dzt − ptdu, η2 = dzx − pxdu.

It is clear that dη1 = du ∧ dpt and dη2 = du ∧ dpx. In this case, the Reeb vector fields are

Rt
1 = @

@t
, Rt

2 = @

@x
, Rz

1 = @

@zt , Rz
2 = @

@zx .

The Hamiltonian function h such that FL ∗h = EL is

h(t, x; u, pt , px; zt , zx) = 1
2
(pt)2 − 1

2
(px)2 + g(t, u) + γ(x)zt.

Consider a 2-vector field Y = (Y1, Y2) ∈ X2(R2 ×⊕2T∗R ×R2) with local expression

Yα = At
α
@

@t
+ Ax

α
@

@x
+ Bα

@

@u
+ Ct

α
@

@pt + Cx
α

@

@px +Dt
α
@

@zt +Dx
α
@

@zx .

The Hamilton–De Donder–Weyl Eq. (6) for the 2-vector field Y yield the conditions

�����������������������

At
1 = 1, Ax

1 = 0, At
2 = 0, Ax

2 = 1,
B1 = pt , B2 = −px,

Ct
1 + Cx

2 = −@g
@u
− γ(x)pt ,

Dt
1 +Dx

2 = 1
2
(pt)2 − 1

2
(px)2 − g(t, u) − γ(x)zt.
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Consider now an integral section ψ(r) = (t(r), x(r); u(r), pt(r), px(r); zt(r), zx(r)) of the 2-vector field Y. As in the Lagrangian case, it is
clear that ψ satisfies the equation

@2u
@t2 − @2u

@x2 + @g
@u
(t, u) + γ(x)@u

@t
= 0,

which corresponds to the equation of a damped vibrating string with external forcing.

VIII. CONCLUSIONS AND FURTHER RESEARCH
In this paper, we have introduced a new geometric framework to describe non-autonomous non-conservative field theories: k-cocontact

structures. This geometric structure combines the notions of k-contact and k-cosymplectic manifolds and permits the development of
Hamiltonian and Lagrangian formulations of non-autonomous non-conservative field theories.

In more detail, in Definition 3.1, we introduced the notion of k-cocontact structure as a couple of families of k differential one-forms
satisfying certain properties. We have studied the geometry of these manifolds and, in particular, we have proved the existence of Darboux-
type coordinates.

Using this geometric framework, the notion of a k-cocontact Hamiltonian system is presented, along with its corresponding field equa-
tions, generalizing the Hamilton–De Donder–Weyl equations of Hamiltonian field theory. We have also compared this formulation with the
k-contact formalism introduced in Ref. 34 and shown that they are partially equivalent for autonomous field theories.

Moreover, we have developed a Lagrangian formulation for non-autonomous non-conservative field theories. In particular, we have
given the conditions determining whether a Lagrangian function yields a k-cocontact structure, and we have introduced the corresponding
field equations generalizing the well-known Euler–Lagrange equations.

In order to illustrate the formalisms introduced in this paper, we have studied in full detail the example of a nonlinear damped wave
equation with an external time-dependent forcing, both in the Lagrangian and Hamiltonian formulations.

The formalisms introduced in this work open some lines of future research. The first would be to compare the k-cocontact formulation
introduced in this paper and the k-contact formalism34,35 with the so-called multicontact formalism44 recently introduced. In this work, we
have only considered regular Lagrangian functions. The singular case would require the weakening of the notion of k-cocontact structure
and the definition of the notion of k-precocontact structure. Another very interesting line of research would be to study the symmetries of
k-cocontact systems, obtaining conservation and dissipation laws.
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