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Abstract
A new geometric structure inspired by multisymplectic and contact geometries,
which we callmulticontact structure, is developed to describe non-conservative
classical field theories. Using the differential forms that define this multicontact
structure as well as other geometric elements that are derived from them while
assuming certain conditions, we can introduce, on the multicontact manifolds,
the variational field equations which are stated using sections, multivector
fields, and Ehresmann connections on the adequate fiber bundles. Furthermore,
it is shown how this multicontact framework can be adapted to the jet bundle
description of classical field theories; the field equations are stated in the Lag-
rangian and the Hamiltonian formalisms both in the regular and the singular
cases.
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1. Introduction

Classical field theories are a recurring theme in mathematical physics. The field equations
are obtained in a rather intuitive way by making use of the calculus of variations, and that is
the approach developed by T. de Donder [20] who extended the Hamiltonian formulation for
mechanics due to E. Cartan [16]. This theory was discussed later by H. Weyl [89] so that the
theory was known as the De Donder–Weyl theory. Later, T. Lepage [73] gave a more general
approach. The introduction of the notions of fiber bundles and connections by C. Ehresmann
[41–43] provided the additional tools for developing the geometrical arena for a further step
in the study of classical field theories.

One of the major objectives of the researchers was the possibility of extending the sym-
plectic formalism, so successful in Hamiltonian mechanics, to the case of field theories in a
covariant way. Let us remember that the introduction of symplectic geometry in the study of
mechanics has meant a spectacular advance in the knowledge of its dynamics [1, 4, 74]. It
suffices to mention the study of the momentum map and the symplectic reduction theorem,
the notions of Lagrangian submanifolds allowing a geometric interpretation of the dynamics,
the coisotropic reduction theorem, the use of Lie groups, the introduction of geometric integ-
rators, or more recently, the use of Lie groupoids, which clarify the discrete formulations of
mechanics (both in their Hamiltonian and Lagrangian settings).

The first geometric approach is the so-called multisymplectic geometry. This approxima-
tion is due to three independent groups, and is a natural extension of symplectic geometry. On
the one hand, the seminar coordinated by W.M. Tulczyjew in Warsaw [67, 68], the develop-
ments in USA by H. Goldschmidt and S. Sternberg [57]; and those of P. L. García-Pérez in
Spain [45]. The multisymplectic extension is really natural: if the canonical symplectic form
on the cotangent fibration T∗M of an arbitrary manifold M is the differential of the canonical
1-form (the Liouville form), it suffices to think that the sections of the cotangent fibration are
the differential 1-forms on M, and that the vector bundle of 1-forms Λ1T∗M is nothing but
T∗M. Therefore, it suffices to extend the definition to the vector bundle of k-differential forms,
ΛkT∗M, and the differential of the canonical form here is precisely a multisymplectic form.

In the case of classical field theories, one starts with a fibration π : E−→M, where M
represents spacetime, and the local sections are the fields. In the Lagrangian formalism, one
considers the fiber bundle J1π of local sections, where the Lagrangian density is given (if the
field theory is of higher order, we need higher order jets bundles [32, 86]). The Hamiltonian
formulation considers the ΛmT∗E fibration of m-differential forms on E (where m= dimM),
and two special vector fiber subbundles: Λm

1 T
∗E and Λm

2 T
∗E, with forms that vanish when

one or two arguments are vertical with respect to the π fibration, respectively. The space of
generalized momenta is then J1∗π = Λm

2 T
∗E/Λm

1 T
∗E. The Hamiltonian density determines a

section of the epimorphism of vector bundles: h : J1∗π −→ Λm
2 T

∗E.
Since this is the natural framework for obtaining the field equations, the geometric model

was available but the geometric structure itself had not been studied. M.J. Gotay proposed an
abstract definition of multisymplectic form [58], which was later studied in detail by several
authors [12, 14, 15, 65], and in the paper by G. Martin [78] a characterization of when a
multisymplectic manifold is locally diffeomorphic to the model is given (see also [30]). In
recent years, the research on these topics has continued in order to extend the results already
known for symplectic manifolds.

Another geometric model to describe field theories is also a natural extension of symplectic
geometry. It consists in considering the Whitney sum of k copies of the cotangent bundle
of a manifold M, namely ⊕kT∗M, and the family of k canonical forms obtained by lifting
the natural symplectic form of the cotangent bundle to the sum; this defines what is called
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a k-symplectic structure. Given a Hamiltonian function in that space (that is, which does not
depend on the spacetime variables), this geometric framework allows us to set the Hamiltonian
field equations. The Lagrangian formalism can also be constructed on the manifold ⊕kTM.
Finally, when the Lagrangian or the Hamiltonian functions depend explicitly on the space-
time variables, the Lagrangian and the Hamiltonian formalisms are built on the manifolds
Rm× (⊕kTM) and Rm× (⊕kT∗M), with m= dimM, respectively, and this is the so-called
k-cosymplectic formulation of first-order field theories. (See [34] and references therein, for
details on all these constructions.) Finally, we have to mention the so-called polysymplectic
formulations of classical field theories (see, for instance, [55, 66]).

However, there are Lagrangian andHamiltonian densities that depend not only on the space-
time variables, the fields and their derivatives with respect to the spacetime coordinates (the
‘multivelocities’, or the corresponding ‘multimomenta’), but also on certain dissipation para-
meters. These parameters are in fact a version of the action provided by the Lagrangian, and the
corresponding equations are of non-conservative nature. Indeed, these field theories provide
non-conservative instead of conservative quantities as in the usual case.

After agreeing on the field equations by means of a variational principle (the so-called
Herglotz principle [63, 64]), the aim was to identify the underlying geometrical structures. In
mechanics, the framework is the contact geometry [6, 53, 56, 69, 74] whose canonical model
is the cotangent fibration T∗Q×R which possesses such a canonical structure, ηQ = ds− θQ,
where θQ is the Liouville form on T∗Q. The Hamiltonian systems on this scenario are called
contact Hamiltonian systems, and provide indeed non-conservative dynamical equations [9–
11, 13, 23, 24, 47, 59, 60, 71, 75, 84]. The same happens in the corresponding Lagrangian
picture of mechanics [18, 23–25, 47, 60]. It is worth pointing out that contact geometry allows
to study more systems than just dissipative ones [35].

So, for the case of non-conservative field theories, it was natural to consider a construction
similar to the k-symplectic or the k-cosymplectic formulations. This was developed by some
of the authors in [46, 48, 61, 83]. Other less-general approaches to these kinds of geometric
structures were also introduced in [8, 19, 44, 79, 87]. (See also [3, 5] for other generalizations
of contact geometry related with polysymplectic geometry and other geometric structures).

Nevertheless, the analogous case to the multisymplectic one is less obvious. So the work-
ing strategy is twofold. On the one hand, time-dependent contact Hamiltonian systems were
studied since time-dependent systems can be considered as a particular case of a field theory
whose base manifold is R, the time. This gives rise to a new geometric framework, the so-
called cocontact structure, constituted by a pair of 1-forms, grouping in a single structure the
contact and the cosymplectic geometries [21]. On the other hand, given a fibration π : E−→M,
we could begin exploring how to combine the volume form ω on M (assumed always to be
an oriented manifold) with another m-form constructed from the canonical m-form defined on
Λm
2 T

∗E. Then, by studying the properties that a pair of m-forms should verify in order to get
a model that would provide the non-conservative field equations which are obtained from the
extended Herglotz variational principle for field theories [49], we would arrive to the notion of
what we call multicontact structures. Note that we will generalize cocontact geometry instead
of contact geometry.

The procedure has been somewhat an inverse problem, since we knew the equations that had
to be satisfied but not the geometry that provided them. Thus, our aim in this paper is to define
and study the properties of this structure in the most general situation, and then go to the partic-
ular case we are interested in, to set the field equations, and then to develop the Lagrangian and
the Hamiltonian formalisms for first-order non-conservative field theories, including their vari-
ational formulation. At the end, in the case at hand, the structure in question would be defined
in the spaces J1π×M Λm−1M and J1∗π×M Λm−1M for the Lagrangian and the Hamiltonian
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cases, respectively. It is important to point out that, although there is a previous attempt to
define a generalization of the contact structure based on the multisymplectic geometry [88],
our approach is more accurate according to the objective previously stated, which is to extend
the Lagrangian and Hamiltonian field equations for non-conservative field theories.

The paper is structured as follows: section 2 is devoted to review basic knowledge; namely,
some fundamental geometrical tools, cocontact geometry and the standard multisymplectic
formulation of classical field theory. In section 3 we introduce the multicontact structure, we
study its properties, and we restrict to the particular situation which we will be interested in
later: the variational case. It is in this case where we state the field equations in several equi-
valent geometrical ways. In sections 4 and 5 we adapt the above results in order to develop
the Lagrangian and the Hamiltonian formalisms for non-conservative field theories. The vari-
ational formulation is discussed in section 6. Finally, section 7 is devoted to analyse some
examples; in particular, the time-dependent contact dynamical systems as a particular case
of our model, the vibrating string with time-dependent dissipation, and Maxwell’s equations
(with charges and currents) with dissipation terms.

All themanifolds are real, second countable and of classC∞, and themappings are assumed
to be smooth. Sum over crossed repeated indices is understood.

2. Preliminary concepts

2.1. Multivector fields and Ehresmann connections

For more information about multivector fields see, for instance, [14, 37, 65]. For the relation
between multivector fields and Ehresmann connections see, for instance, [37].

LetM be a manifold with dimM= n. Sections of the multitangent bundle ΛmTM→M
(m! n) are called m-multivector fields or multivector fields of degree m on M. They are
just the contravariant skew-symmetric tensor fields of degree m in M (if m> n they are all
zero). The set of m-multivector fields inM is denoted Xm(M).

For every m-multivector field X ∈ Xm(M) and p ∈M, there exists an open neighborhood
Up ⊂M and X1, . . . ,Xr ∈ X(Up) such that

X|Up
=

∑

1!i1<···<im!r

f i1···imXi1 ∧ · · ·∧Xim ,

where f i1···im ∈ C∞(Up) and m! r! dimM. In particular, a multivector field X ∈ Xm(M) is
said to be locally decomposable if, for every point p ∈M, there exists an open neighborhood
Up ⊂M such that

X|Up
= X1 ∧ · · ·∧Xm , for some X1, . . . ,Xm ∈ X(Up) .

The contraction of a multivector field X ∈ Xm(M) and a differentiable form Ω ∈Ωk(M) is
the natural contraction between tensor fields and is given by

i(X) Ω|Up
=

∑

1!i1<···<im!r

f i1···im i(Xi1 ∧ · · ·∧Xim)Ω=
∑

1!i1<...b<im!r

f i1···im i(Xim) · · · i(Xi1)Ω ,

if k" m, and i(X) Ω|Up
= 0, if k < m.

A locally decomposable multivector field X ∈ Xm(M) is locally associated to an
m-dimensional distribution D in M if there exists a connected open set U⊆M such that
X|U is a section of ΛmD|U. Then, locally decomposable m-multivector fields are locally asso-
ciated to m-dimensional distributions. Multivector fields associated with the same distribution
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form an equivalence class {X} inXm(M). IfX1, X2 ∈ Xm(M) are two multivector fields loc-
ally associated with the same distribution on the open set U⊆ E, then there exists f ∈ C∞(U)
such that X1 = f X2 (on U).

Given a distributionD ⊆ TM and p ∈M, a submanifold S⊆M is an integral submanifold
of D at p if TpS=Dp. Then, a distribution D ⊆ TM is an integrable distribution if, for every
p ∈M, there exists an integral submanifold of D containing p. Therefore, a multivector field
is integrable if its locally associated distribution is integrable. An m-dimensional submanifold
S ↪→M is an integral manifold of X ∈ Xm(M) if, and only if, for every p ∈ S, the multivector
Xp spans ΛmTpS.

Now, let κ : M→M be a fiber bundle with dimM= m and dimM= N+m. A multivector
field X ∈ Xm(M) is κ-transverse if, at every p ∈M, we have that i(X)(κ∗β)|p )= 0, for every
non-vanishing β ∈Ωm(M). If x ∈M and p ∈M, given a local section of κ, ψ : Ux ⊂M→M,
with p= ψ(x); we say that ψ is an integral section of X at p if ψ(Ux) is the integral manifold
of the multivector field X ∈ Xm(M) at p. If a multivector field X ∈ Xm(M) is integrable,
then it is κ-transverse if, and only if, its integral manifolds are local sections of κ. If M is
an orientable manifold and ω ∈Ωm(M) is the volume form in M, then the condition that a
multivector field X ∈ Xm(M) is κ-transverse can be written as i(X)(κ∗ω) )= 0; furthermore,
it is possible to take a representative X in the class of κ-transverse multivector fields such that
i(X)(κ∗ω) = 1.

Furthermore, the canonical prolongation of a section ψ : U⊂M→M to ΛmTM is the
section ψ(m) : U⊂M→ ΛmTM defined as ψ(m) := ΛmTψ ◦Yω; where ΛmTψ : ΛmTM→
ΛmTM is the natural extension of ψ to the corresponding multitangent bundles, and Yω ∈
Xm(M) is the unique m-multivector field on M such that i(Yω)ω = 1. Then, ψ is an integral
section of X ∈ Xm(M) if, and only if, X ◦ψ = ψ(m).

In the ambient of fiber bundles, an Ehresmann connection on the bundle P→M is a
κ-semibasic 1-form ∇ on P with values in TP, that is, a (1,1)-tensor field on P, such that
i(∇)α= α, for every κ-semibasic form α ∈Ω1(P) (here i(∇)α denotes the usual tensorial
contraction). An Ehresmann connection splits TP into the vertical and a horizontal distribu-
tion and, in this way, ∇ represents also the horizontal projector. The connection is said to be
integrable if its associated horizontal distribution is integrable (the necessary and sufficient
condition is that the curvature tensor associated to ∇ is zero; that is, the connection is flat).
Then, classes of locally decomposable and κ-transverse multivector fields {X}⊆ Xm(P) are
in one-to-one correspondence with orientable Ehresmann connection forms∇ on P→M. This
correspondence is characterized by the fact that the horizontal distribution associated with ∇
is the distribution associated with {X}. In this correspondence, classes of integrable (locally
decomposable) and κ-transverse m-multivector fields correspond to flat orientable Ehresmann
connections.

Finally, let M= J1π be the first-order jet bundle of the bundle π : E→M, with natural
projections π1 : J1π→ E and π̄1 : J1π→M. A multivector field X ∈ Xm(J1π) is a holonomic
multivector field (or also a sopde) if (a) X is integrable, (b) X is π̄1−transverse, and (c) the
integral sections of X are holonomic sections of π̄1; that is, they are canonical lifts to J1π
of sections of the projection π. Note that, as a consequence, X is locally decomposable. If
(xµ,yi,yiµ) are coordinates in J

1π adapted to the bundle structure, the general local expression
for a locally decomposable π̄1−transverse multivector field X ∈ Xm(J1π) is

X=
m∧

µ=1

Xµ = f
m∧

µ=1

(
∂

∂xµ
+Di

µ
∂

∂yi
+Hi

µν
∂

∂yiν

)
, where f ∈ C∞(J1π) . (1)
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This local expression defines equivalence classes of multivector fields on J1π. Integral sections

(xµ,yi(x),yiµ(x)) of X verify that
∂yi

∂xµ
= Di

µ and
∂yiν
∂xµ

= Hi
µν . If X is holonomic, thenDi

µ = yiµ

andHi
µν =

∂2yi

∂xµ∂xν
. Sometimes, π̄1−transversem-multivector fields which are not integrable,

but whose local expressions are like (1) withDi
µ = yiµ, are called semi-holonomicmultivector

fields.
Finally, if∇ is the Ehresmann connection in J1π associated with the class of π̄1-transverse

and locally decomposable multivector fields represented by (1), its local expression is

∇= dxµ ⊗
(

∂

∂xµ
+Di

µ
∂

∂yi
+Hi

µν
∂

∂yiν

)
,

and, as above, we say that ∇ is semi-holonomic when Di
µ = yiµ, and holonomic or sopde if

its horizontal distribution is integrable and its integral submanifolds are holonomic sections.

2.2. Notions on cocontact geometry and cocontact Hamiltonian systems

The multicontact structure we will introduce is a generalization of cocontact geometry. Thus,
let us provide a brief introduction to cocontact structures and cocontact Hamiltonian systems
[21, 84].

Definition 2.1. Let M be a manifold of dimension 2n+ 2. A cocontact structure on M is a
pair (τ,η) of 1-forms onM such that τ is closed and such that τ ∧ η ∧ (dη)∧n is a volume form
on M. Under these hypotheses, (M,τ,η) is called a cocontact manifold.

In a cocontact manifold (M,τ,η) there are two vector fields Rt,Rs ∈ X(M) which satisfy the
conditions






i(Rt)τ = 1 ,
i(Rt)η = 0 ,
i(Rt)dη = 0 ,






i(Rs)τ = 0 ,
i(Rs)η = 1 ,
i(Rs)dη = 0 .

The vector fields Rt and Rs are called the time Reeb vector field and the contact Reeb vector
field, respectively.

If (M,τ,η) is a cocontact manifold and H ∈ C∞(M), then the tuple (M,τ,η,H) is a cocon-
tact Hamiltonian system. The equations

i(XH)τ = 1 , i(XH)η =−H , i(XH)dη = dH− (LRsH)η− (LRtH)τ (2)

are the cocontact Hamiltonian equations for vector fields and a solution XH to them is said
to be a cocontact Hamiltonian vector field associated with H. The vector field XH ∈ X(M) is
unique.

If c : I⊂ R→M is a curve and c ′ : I⊂ R→ TM is the canonical lift of c to the tangent
bundle TM, then the equations

i(c′)τ = 1 , i(c′)η =−H ◦ c , i(c′)dη = (dH− (LRsH)η− (LRtH)τ) ◦ c

are the cocontact Hamiltonian equations for curves and their solutions are the integral curves
of the contact Hamiltonian vector fields solution to (2).

In section 7.1, it is shown how the cocontact formulation is recovered from the multicontact
setting introduced in section 3.
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2.3. Review on multisymplectic field theory

For more details on the Lagrangian formalism of classical field theories see, for instance, [2,
31, 36, 37, 45, 57, 85, 86], and for the Hamiltonian formalism [12, 29, 38, 39, 52, 62, 70, 77,
81, 85].

A first-order classical field theory is described by the following elements: First, let π : E→
M be the configuration bundle, with dimM= m and dimE= n+m, where M is an orientable
manifold with volume form ωM ∈Ωm(M), and the first-order jet bundle π1 : J1π→ E, which
is also a bundle over M with projection π̄1 = π ◦π1 : J1π −→M, and dim J1π = nm+ n+m.
We denote by (xµ,yi,yiµ) (µ= 1, . . . ,m; i= 1, . . . ,n) natural coordinates in J1π adapted to the
bundle structure and such that ω := π̄∗

1ωM = dx1 ∧ · · ·∧ dxm ≡ dmx. Second, the Lagrangian
density is a π̄1-semibasicm-form on J1π that can be expressed asL= Lω, where L ∈ C∞(J1π)
is the Lagrangian function associated with L and ω. The bundle J1π is endowed with a
canonical structure, the canonical endomorphism J, which is a (1,2)-tensor field whose local

expression is J=
(
dyi− yiµdx

µ
)
⊗ ∂

∂yiν
⊗ ∂

∂xν
. Then the Poincaré–Cartan m and (m+ 1)-

forms associated with L are defined as ΘL := i(J)dL+L ∈Ωm(J1π) and ΩL :=−dΘL ∈
Ωm+1(J1π), and they have the following local expressions:

ΘL =
∂L
∂yiµ

dyi ∧ dm−1xµ −
(
∂L
∂yiµ

yiµ − L
)
dmx ,

ΩL =− ∂2L

∂yjν∂yiµ
dyjν ∧ dyi ∧ dm−1xµ −

∂2L
∂yj∂yiµ

dyj ∧ dyi ∧ dm−1xµ

+
∂2L

∂yjν∂yiµ
yiµ dy

j
ν ∧ dmx+

(
∂2L

∂yj∂yiµ
yiµ −

∂L
∂yj

+
∂2L

∂xµ∂yjµ

)
dyj ∧ dmx ,

where dm−1xµ ≡ i

(
∂

∂xµ

)
dmx. The pair (J1π,ΩL) is called a Lagrangian system. The

Lagrangian function and the corresponding Lagrangian system are regular ifΩL is amultisym-
plectic form (i.e. 1-non degenerate); elsewhere they are singular or non-regular. This regular-

ity condition is locally equivalent to demand that the Hessian matrix

(
∂2L

∂yiµ∂y
j
ν

)
is regular

everywhere.
The Lagrangian field equations can be derived from the so-called Hamilton variational

principle which states that, if Γ(π) denotes the set of sections of π, the variational problem
for a Lagrangian system (J1π,ΩL) is the search of the critical (or stationary) sections of the
functional

L : Γ(π)−→ R

φ .−→
ˆ
M
(j1φ)∗ΘL ,

with respect to the variations of φ given by φt = σt ◦φ, where {σt} is a local 1-parameter group

of any compact-supported π-vertical vector field Z ∈ X(E); that is,
d
dt

∣∣∣
t=0

ˆ
M

(
j1φt
)∗
ΘL = 0.

Then, for a Lagrangian system (J1π,ΩL), the Lagrangian field equations derived from this
variational principle can be stated geometrically in several alternative ways. In particular, for
a section φ ∈ Γ(π), these equations are equivalently stated as:

8
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(a) ( j1φ)∗ i(X)ΩL = 0, for every X ∈ X(J1π).
(b) i(( j1φ)m)(ΩL ◦ j1φ) = 0.
(c) j1φ is an integral section of a class of holonomic multivector fields {XL}⊂ Xm(J1π)

satisfying

i(XL)ΩL = 0 , for every XL ∈ {XL} .

(d) j1φ is an integral section of a holonomic connection ∇L in J1π satisfying

i(∇L)ΩL = (m− 1)ΩL .

In a natural system of coordinates in J1π, if φ= (xµ,yi(xν)), then j1φ=(
xµ,yi(xν), ∂yi

∂xµ (x
ν)
)
and the above equations lead to the Euler–Lagrange equations

∂L
∂yi

◦ j1φ− ∂

∂xµ

(
∂L
∂yiµ

◦ j1φ
)
= 0 .

For the Hamiltonian formalism of classical field theories, consider the extended mul-
timomentum bundle Mπ ≡ Λm

2 T
∗E, that is the bundle of m-forms on E vanishing by con-

traction with two π-vertical vector fields (or equivalently, the set of affine maps from J1π
to π∗ΛmT∗M/ R), which is endowed with natural coordinates (xν ,yi,pνi ,p) adapted to the
bundle π : E→M, and such that ω = dmx; so dimMπ = nm+ n+m+ 1. We define the
restricted multimomentum bundle J1∗π ≡Mπ/Λm

1 T
∗E (where Λm

1 T
∗E is the bundle of π-

semibasic m-forms on E); whose natural coordinates are (xµ,yi,pµi ), and so dim J1∗π =
nm+ n+m. We have the natural projections

κ̄ : J1∗π→M , κ : J1∗π→ E , p : Mπ→ J1∗π .

Associated with a Lagrangian function L there are the extended Legendre map, F̃L : J1π→
Mπ, and the restricted Legendre map, FL := p ◦ F̃L : J1π→ J1∗π, which are locally given by
the expressions

F̃L
∗
xν = xν , F̃L

∗
yi = yi , F̃L

∗
pνi =

∂L
∂yiν

, F̃L
∗
p= L− yiν

∂L
∂yiν

,

FL∗xν = xν , FL∗yi = yi , FL∗pνi =
∂L
∂yiν

.
(3)

The Lagrangian L is regular if, and only if, FL is a local diffeomorphism, and L is said to be
hyperregular when FL is a global diffeomorphism.

AsMπ is a subbundle of ΛmT∗E, it is endowed with a canonical form Θ̃ ∈Ωm(Mπ) (the
‘tautological form’) which is defined as follows: if (y,ξ) ∈ Λm

2 T
∗E, with y ∈ E, x= π(y), and

ξ ∈ Λm
2 T

∗
x E; then, for every X1, . . . ,Xm ∈ T(y,ξ)(Mπ),

Θ̃((y,ξ);X1, . . . ,Xm) := ξ(y;T(y,ξ)(κ ◦ p)(X1), . . . ,T(y,ξ)(κ ◦ p)(Xm)) .

Then we also have the multisymplectic form Ω̃ :=−dΘ̃ ∈Ωm+1(Mπ). They are known as
the multimomentum Liouville m and (m+ 1)-forms, whose local expressions are

Θ̃= pµi dy
i ∧ dm−1xµ + pdmx , Ω̃=−dpµi ∧ dyi ∧ dm−1xµ − dp∧ dmx . (4)

9
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Now, when L is a regular or hyperregular Lagrangian, we can construct the map
h := F̃L ◦FL−1 (which is a section of the projection p : Mπ→ J1∗π, and is called a Hamilto-
nian section).

Then, associated with h, we can define the so-called Hamilton–Cartan m-form of J1∗π
asΘh := h∗Θ̃ ∈Ωm(J1∗π), and theHamilton–Cartan (m+ 1)-form Ωh :=−dΘh = h∗Ω̃ ∈
Ωm+1(J1∗π) which is a multisymplectic form in J1∗π. Since, locally, the Hamiltonian section
is specified by h(xµ,yi,pµi ) = (xµ,yi,pµi ,p=−H(xν ,yi,pνj )), the local expressions of these
differential forms are

Θh = pνi dy
i ∧ dm−1xµ −Hdmx , Ωh =−dpµi ∧ dyi ∧ dm−1xµ + dH∧ dmx . (6)

Note that F̃L
∗
Θ̃= FL∗Θh =ΘL and F̃L

∗
Ω̃= FL∗Ωh = ΩL. The pair (J1∗π,Ωh) is called the

Hamiltonian system associated with the (hyper)regular Lagrangian system (J1π,ΩL).
The above construction can be done independently of having a starting Lagrangian system,

simply giving any Hamiltonian section of the projection p : Mπ→ J1∗π. Then, as in the Lag-
rangian formalism, in order to obtain the Hamiltonian field equations we can state the so-called
Hamilton–Jacobi variational principle as follows: the variational problem for the Hamiltonian
system (J1∗π,Ωh) is the search of the critical sections of the functional

H : Γ(κ̄)−→ R

ψ .−→
ˆ
M
ψ∗Θh ,

with respect to the variations of ψ given by ψt = σt ◦ψ, where {σt} is a local one-parameter

group of any compact-supported κ̄-vertical vector field Z ∈ X(J1∗π); that is,
d
dt

∣∣∣
t=0

ˆ
M
ψ∗
t Θh =

0. Then, the Hamiltonian field equations derived from this variational principle, which are
called Hamilton–de Donder–Weyl equations, can be set geometrically in several alternative
ways. In particular, for a section ψ ∈ Γ(κ̄), these equations are equivalently stated as:

(a) ψ∗ i(X)Ωh = 0, for every X ∈ X(J1∗π).
(b) i(ψ(m))(Ωh ◦ψ) = 0.
(c) ψ is an integral section of a class of integrable and κ̄-transverse multivector fields {Xh}⊂

Xm(J1∗π) satisfying that

i(Xh)Ωh = 0 , for every Xh ∈ {Xh} .

(d) ψ is an integral section of an integrable connection ∇h in J1∗π satisfying the equation

i(∇h)Ωh = (m− 1)Ωh .

In a natural system of coordinates in J1∗π, if ψ = (xµ,yi(xν),pµi (x
ν)), the above equations

lead to

∂(yi ◦ψ)
∂xµ

=
∂H
∂pµi

◦ψ ,
∂(pµi ◦ψ)
∂xµ

=−∂H
∂yi

◦ψ .

10
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If (J1∗π,Ωh) is the Hamiltonian system associated with a (hyper)regular Lagrangian system
(J1π,ΩL) then, since the restricted Legendre map FL is a diffeomorphism, it is evident that the
solutions to the Lagrangian field equations for the system (J1π,ΩL) are in one-to-one corres-
pondence with the solutions to the Hamilton–de Donder–Weyl equations for the Hamiltonian
system (J1∗π,Ωh).

In the case of singular Lagrangians, in order to ensure the existence of a Hamiltonian
description we need to impose some minimal regularity conditions. In particular, we consider
the case of almost-regular Lagrangians L ∈ C∞(J1π), which are those such that:

(a) P0 := FL(J1π) is a closed submanifold of J1∗π,
(b) FL is a submersion onto its image,
(c) for every ȳ ∈ J1π, the fibers FL−1(FL(ȳ)), are connected submanifolds of J1π.

Therefore we have that the submanifolds P0 := FL(J1π) and P̃0 := F̃L(J1π) are fiber
bundles overE andM, and P̃0 is transverse to the projection p : Mπ→ J1∗π and diffeomorphic
to P0. We denote by 0 : P0 ↪→ J1∗π and ̃0 : P̃0 ↪→Mπ the corresponding embeddings. This
diffeomorphism is denoted by p̃ : P̃0 → P0, and is just the restriction of p to P̃0. Thus, we have
the diagram

(7)

where FL0 is the restriction map of FL onto P0, defined by FL= 0 ◦FL0, and the same for
F̃L0. Then, taking h̃ := p̃−1, we define the Hamilton–Cartan forms

Θ0
h = (̃0 ◦ h̃)∗Θ̃ ∈Ωm(P0) , Ω0

h =−dΘ0
h = (̃0 ◦ h̃)∗Ω̃ ∈Ωm+1(P0) ,

which verify that ΘL = FL ∗
0 Θ0

h and ΩL = FL ∗
0 Ω0

h. Furthermore, there exists a Hamiltonian
function H0 ∈ C∞(P0) such that EL = FL ∗

0 H0, and therefore the coordinate expression of
these forms are

Θ0
h = ∗0 (p

µ
i dy

i ∧ dm−1xµ)−H0 dmx, Ω0
h = ∗0 (−dpµi ∧ dyi ∧ dm−1xµ)+ dH0 ∧ dmx . (8)

In general, Ω0
h is a premultisymplectic form. The pair (P0,Ω0

h) is the Hamiltonian system
associated with the almost-regular Lagrangian system (J1π,ΩL).

In this framework, the Hamilton–de Donder–Weyl equations for the Hamiltonian system
(P0,Ω0

h) are stated like in the regular case.

11
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3. Multicontact geometry

3.1. Motivational guidelines

In this section, we present a new geometric structure which extends the notion of contact
structure used in contact mechanics, in order to describe non-conservative classical field the-
ories. This new definition must be a generalization of the so-called cocontact structure first
introduced in [21] to describe time-dependent dissipativemechanical systems. It should also be
consistent with the notions of k-contact and k-cocontact manifolds for non-conservative field
theories [46, 48, 61, 83] in the sense that these models must lead to the same equations when
applied to the same situations. This new geometric structure should lead to a system of par-
tial differential equations describing the field theory. In the Lagrangian case, these equations
should be compatible with the ones derived in [49, 54, 72] from variational principles. These
equations are the Herglotz–Euler–Lagrange equations for field theories [49], which read

∂

∂xµ

(
∂L
∂yiµ

)
=
∂L
∂yi

+
∂L
∂sµ

∂L
∂yiµ

.

In order to find this new structure, we first consider the usual geometry to describe first-order
Lagrangian field theories: the fiber bundle J1π of π : E→M. We also consider Λm−1(T∗M)
which, based on the Herglotz’s variational principle for fields, is the natural structure to define
the new variables sµ that represent the dependence of the Lagrangian on the action. In these
fiber bundles we have several natural forms: the Poincaré–Cartan m-form associated with a
Lagrangian function L in J1π, the tautological form associated to Λm−1(T∗M), and a volume
form on M (which is relevant in the cocontact formalism). Based on these objects, we want
to obtain a new form defined in an appropriate extension of the jet bundle, whose coordinate
expression reads

ΘL =− ∂L
∂yiµ

dyi ∧ dm−1xµ +
(
∂L
∂yiµ

yiµ − L
)
dmx+ dsµ ∧ dm−1xµ , (9)

for a Lagrangian function L defined in that jet bundle extension. The new variables sµ must
give account for the ‘non-conservation’ and they are the ‘multicontact variables’. This form
will be used to characterize the field equations so that we reach the Herglotz–Euler–Lagrange
equations.

Then, we proceed to generalize the structure as much as possible, as long as it allows us to
derive the field equations. This is important because some of the applications naturally require
manifolds which do not have the canonical structure. This is the case for multisymplectic
systems and it is expected that it will also be the case for multicontact systems.

It is important to note that the structure we will define is not the same as that introduced in
[88] which is too general for the objectives previously mentioned.
Notation: In this section we work with distributions. So, the vector fields associated with a

distributionD will be denoted Γ(D), the sections ofD. In particular, for a differential form ω,
kerω is a distribution and Γ(kerω) is the set of the associated vector fields.

3.2. Multicontact and premulticontact structures

Let P be a manifold with dimP= m+N and N" m" 1, and twom-formsΘ,ω ∈Ωm(P)with
constant rank. These forms play different roles: one of them, ω, is a ‘reference form’, while
the other, Θ, is the one that gives the structure that we want to introduce, properly said.

12
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First, given a regular distribution D ⊂ TP, consider Γ(D), the set of sections of D. For
every k ∈ N, let

Ak(D) := {α ∈Ωk(P) | i(Z)α= 0 ; ∀Z ∈ Γ(D)} ;

that is, the set of differential k-forms on P vanishing by the vector fields of Γ(D). At a point
p ∈ P, the point-wise version is Ak

p(D) :=
{
α ∈ ΛkT∗

pP | i(v)α= 0 ; ∀v ∈Dp
}
.

Lemma 3.1. If D is an involutive distribution and α ∈Ak(D), we have

i(X)i(Y)dα= 0 ,

for every X,Y ∈ Γ(D).

Proof. Since D is involutive, we have that [X,Y] ∈ Γ(D) for every X,Y ∈ Γ(D). Then

0= LX(i(Y)α) = i([X,Y])α+ i(Y)d(i(X)α)+ i(Y)i(X)dα= i(Y)i(X)dα .

For a form α ∈Ωk(P), with k > 1, the ‘1-ker of α’ will be simply denoted as kerα; that
is, kerα= {Z ∈ X(P) | i(Z)α= 0}. With this in mind, the above definition of Ak(D) can be
written as

Ak(D) =
{
α ∈Ωk(P) | Γ(D)⊂ kerα

}
.

Then, for a pair (Θ,ω) we define:

Definition 3.2. The Reeb distribution associated to the pair (Θ,ω) is the distribution DR ⊂
TP defined, at every point p ∈ P, as

DR
p =

{
v ∈ (kerω)|p | i(v)dΘp ∈Am

p (kerω)
}
,

and DR =
⋃

p∈P
DR

p . The set of sections of the Reeb distribution is denoted by R := Γ(DR),

and its elements R ∈R are called Reeb vector fields. Then, if kerω has constant rank,

R=
{
R ∈ Γ(kerω) | i(R)dΘ ∈Am(kerω)

}
. (10)

Note that kerω ∩ kerdΘ⊂DR.

Lemma 3.3. If ω is a closed form and has constant rank, then R is involutive.

Proof. The distribution kerω is involutive because ω is closed. For every R1,R2 ∈R, we have
that i(R1)dΘ, i(R2)dΘ ∈Am(kerω) and, as a consequence, their exterior differentials vanish
by the action of two vector fields of Γ(kerω). Then, for every Y ∈ Γ(kerω),

i(Y) [i([R1,R2])dΘ] = i(Y) [LR1(i(R2)dΘ)− i(R2)LR1dΘ]

= i(Y) [i(R1)di(R2)dΘ− i(R2)di(R1)dΘ] = 0 .

Definition 3.4. The pair (Θ,ω) is a premulticontact structure if ω is a closed form and, for
0! k! N−m, we have that:

(a) rankkerω = N.
(b) rankDR = m+ k.
(c) rank(kerω ∩ kerΘ∩ kerdΘ) = k.
(d) Am−1(kerω) = {i(R)Θ | R ∈R}.

13
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Then, the triple (P,Θ,ω) is said to be a premulticontact manifold andΘ is called a prem-
ulticontact form onP. The distribution C ≡ kerω ∩ kerΘ∩ kerdΘ is called the characteristic
distribution of (P,Θ,ω).

If k = 0, the pair (Θ,ω) is amulticontact structure, (P,Θ,ω) is amulticontact manifold
and, in this situation, Θ is said to be a multicontact form on P.

From now on, we will write ‘(pre)multicontact’ to refer interchangeably to both situations
(multicontact and premulticontact), and write ‘multicontact’ or ‘premulticontact’ to distin-
guish each of them in particular.

In [88], Vitagliano introduces higher codimensional versions of contact manifolds that he
calls ‘multicontact manifolds’. This notion is different from ours since, in [88], a multicontact
manifold is a manifold equipped with a maximally non-integrable distribution of higher codi-
mension, which is called a multicontact structure. However, here we are considering differ-
ential forms, not distributions. The distinction is just the same as in contact geometry, where
one can consider a 1-codimensional contact distribution on a (2n+ 1)-dimensional manifold
or a contact 1-form. Both descriptions are related but do not coincide. Our interest in using
differential forms relies on the fact that we seek a suitable geometric framework in order to
write the Lagrangian and Hamiltonian field equations for classical field theories.

Lemma 3.5. The characteristic distribution of a (pre)multicontact manifold (P,Θ,ω) is invol-
utive and

kerω ∩ kerΘ∩ kerdΘ=DR ∩ kerΘ .

Proof. Consider the vector fields X,Z ∈ Γ(kerω ∩ kerΘ∩ kerdΘ) defined on an open set.
Then, [X,Z] ∈ Γ(kerω ∩ kerdΘ) since ω and dΘ are closed. Moreover,

i([X,Z])Θ= LX i(Z)Θ− i(Z)d i(X)Θ− i(Z) i(X)dΘ= 0 .

For the other claim, consider Y ∈ kerω ∩ kerΘ∩ kerdΘ. We have that Y ∈ kerω ∩ kerdΘ, thus
Y ∈DR and, therefore, kerω ∩ kerΘ∩ kerdΘ⊂DR ∩ kerΘ . By property (c) in definition 3.4,
the rank of the characteristic distribution C is k, thus it needs to be proved that the rank of
DR ∩ kerΘ is also k. At every point p ∈ P, consider the linear map

Θ̃p,DR : DR
p −→ Λm−1T∗

pP

v .−→ i(v)Θ .

Then, Im(Θ̃p,DR) =Am−1
p (kerω) has dimension m (by properties (a) and (d) in definition

3.4). Since DR
p has dimension m+ k by property (b), then DR ∩ kerΘ= ker(Θ̃p,DR) has

dimension k.

Associated to a (pre)multicontact structure, we have the following elements:

Proposition 3.6. Given a (pre)multicontact manifold (P,Θ,ω), there exists a unique 1-form
σΘ ∈Ω1(P) verifying that

σΘ ∧ i(R)Θ= i(R)dΘ , for every R ∈R .

Proof. Since i(R)Θ ∈Am−1(kerω) and i(R)dΘ ∈Am(kerω), then, if σΘ exists, it must be an
element of A1(kerω) and it has m independent coefficients. At every point p ∈ P, we have
that {σΘ ∧ i(R)Θ|p = i(R)dΘ|p}R∈R is a system of m+ k lineal equations with m unknowns,
which may not be compatible. For every R ∈R⊂ Γ(kerω) such that i(R)Θ= 0, we also have
that i(R)dΘ= 0 by lemma 3.5. From property (d) in definition 3.4, we have that the rank of

14
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the matrix representing i(R)Θ|p, in a local basis of R, is m and thus the system has a unique
solution.

Definition 3.7. The 1-form σΘ is called the dissipation form.

Using this dissipation form we can define the following operator, which will be used later
to set the field equations in a (pre)multicontact manifold.

Definition 3.8. Let σΘ ∈Ω1(P) be the dissipation form. We define the operator

d :Ωk(P) −→Ωk+1(P)

β .−→ dβ = dβ+σΘ ∧β .

We have that d
2
= 0 if, and only if, dσΘ = 0. In this case, it induces a Lichnerowicz–Jacobi

cohomology [28]. One consequence is that, locally, there exists a function such that σΘ = df
and dβ = e−fd(efβ). In this case, we say that the pair (Θ,ω) is a closed multicontact struc-
ture. This is also the condition required in order to consider variational higher-order contact
Lagrangian field theories [49] (see section 6).

Note that the 1-form σΘ does not only depend on Θ, but also on ω, since the Reeb distri-
bution depends on the form ω. However, since the volume form is understood and in order to
shorten notation, we omit the dependence on ω.

A premulticontact manifold (P,Θ,ω) has three associated distributions: kerω, the Reeb
distribution DR, and the characteristic distribution C. They are all involutive and are nested:
C ⊂DR ⊂ kerω. We can use these facts to obtain adapted coordinates.

Theorem 3.9. Let P be a differentiable manifold and let D1,D2,D3 ⊂ TP be three involutive
distributions on P. Suppose that

(a) D3 ⊂ D2 ⊂ D1,
(b) rankD3 = r3, rankD2 = r3 + r2 and rankD1 = r3 + r2 + r1 ,
(c) dimM= r= r3 + r2 + r1 + r0 ,

with r3,r2,r1,r0 ∈ N∗ = N \ {0}. Then, for every p ∈M, there exists a local chart of
coordinates (U;x1, . . . ,xr), p ∈ U, such that:

(a) D3|U =
〈 ∂

∂x1
, . . . ,

∂

∂xr3

〉
,

(b) D2|U =
〈 ∂

∂x1
, . . . ,

∂

∂xr3
,

∂

∂xr3+1 , . . . ,
∂

∂xr3+r2

〉
,

(c) D1|U =
〈 ∂

∂x1
, . . . ,

∂

∂xr3
,

∂

∂xr3+1 , . . . ,
∂

∂xr3+r2
,

∂

∂xr3+r2+1 , . . . ,
∂

∂xr3+r2+r1

〉
.

Proof. We will follow the ideas contained in the proof of Frobenius theorem given in [80].
Let p ∈ P, by Frobenius theorem there exists a chart of coordinates (W;y1, . . . ,yr), with

p ∈W, such that

D1|W =
〈 ∂

∂y1
, . . . ,

∂

∂yr3+r2+r1

〉
.

Let X1, . . . ,Xr3+r2 be local generators of D2 such that

D1|W =
〈
X1, . . . ,Xr3+r2 ,

∂

∂yr3+r2+1 , . . . ,
∂

∂yr3+r2+r1

〉
,
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and [Xi,Xj] = 0 for every i, j. For the existence of such generators of D2 see [80]. Then we can
take the parameters of the local flow of X1, . . . ,Xr3+r2 as new coordinates, maybe reducing the
neighborhoodW, and obtain a new coordinate system (V;z1, . . . ,zr), with p ∈ V⊆W, such that

(a) D1|V =
〈 ∂

∂z1
, . . . ,

∂

∂zr3+r2
,

∂

∂zr3+r2+1 , . . .
∂

∂zr3+r2+r1

〉
,

(b) D2|V =
〈 ∂

∂z1
, . . . ,

∂

∂zr3+r2

〉
.

Repeating the procedure above with D3 ⊂ D2, we obtain the required coordinate system in
an appropriate neighborhood U of p.

Corollary 3.10. Around every point p ∈ P of a premulticontact manifold (P,Θ,ω), there exists
a local chart of adapted coordinates (U;x1, . . . ,xm,u1 . . . ,uN−m−k,s1 . . . ,sm,w1, . . . ,wk) such
that

kerω|U =
〈 ∂

∂u1
, . . . ,

∂

∂uN−m−k ,
∂

∂s1
, . . . ,

∂

∂sm
,
∂

∂w1 , . . . ,
∂

∂wk

〉
,

DR|U =
〈 ∂

∂s1
, . . . ,

∂

∂sm
,
∂

∂w1 , . . . ,
∂

∂wk

〉
,

C|U =
〈 ∂

∂w1 , . . . ,
∂

∂wk

〉
.

Proof. It is a straightforward consequence of theorem 3.9, taking D1 = kerω, DR = D2 and
C = D3, with r0 = m, r1 = N−m− k, r2 = m, and r3 = k.

Observe that for a multicontact manifold, since C = {0}, there are no coordinates (wj).

On these charts, the coordinates (xµ) can be chosen in such a way that the form ω reads ω|U =

dx1 ∧ · · ·∧ dxm ≡ dmx, and so we shall do henceforth. Then we denote dm−1xµ = i
( ∂

∂xµ

)
dmx.

Taking into account these results, we can give a local characterization of the Reeb vector
fields.

Proposition 3.11. If (P,Θ,ω) is a multicontact manifold, in the above chart of coordinates,
there exists a unique local basis {Rµ} of R such that

i(Rµ)Θ= dm−1xµ .

In addition, [Rµ,Rν ] = 0.

Proof. For every p ∈ P we have the linear map Θ̃p : TpP→ Λm−1T∗
pP given by v .→ i(v)Θp,

for every v ∈ TpP. For the subsetRp ⊂ TpP, we have that Θ̃p(Rp) =Am−1
p (kerω), where both

spaces Rp and Am−1
p (kerω) have the same dimension. Then Θ̃p is an isomorphism and using

the above system of coordinates and taking {dm−1xµ|p} as local basis in Am−1
p (kerω), there

exists a unique solution to i((Rµ)p)Θp = dm−1xµ|p. This solution can be extended to the open
neighbourhood U of p where the local chart of coordinates is defined. Finally, in U:

i([Rµ,Rν ])Θ= LRµ(i(Rν)Θ)+ i(Rν)di(Rµ)Θ+ i(Rν)i(Rµ)dΘ= 0 .

Then, [Rµ,Rν ] ∈ Γ(kerΘ) and [Rµ,Rν ] ∈R because the Reeb distribution is involutive (see
lemma 3.3). Therefore, by lemma 3.5, [Rµ,Rν ] ∈ C = {0}.
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Definition 3.12. The above vector fields Rµ ∈R are the local Reeb vector fields of the mul-
ticontact manifold (P,Θ,ω) in the chart U⊂ P.

From definition 3.2 and, in particular, from (10), we have that there exist local functions
Γµ ∈ C∞(U) associated with the basis {Rµ}, which are given by

i(Rµ)dΘ= Γµω , ∀µ,

because i(Rµ)dΘ ∈Am
p (kerω) = 〈ω〉. As a consequence, the dissipation form introduced in

proposition 3.6 can be locally expressed on these charts as

σΘ = Γµdxµ ,

because σΘ ∧ dm−1xµ = Γµω = Γµ dmx, for every µ.
In the premulticontact case, we have the following result.

Proposition 3.13. If (P,Θ,ω) is a premulticontact manifold, there exist local vector fields
{Rµ} ofR such thatR= 〈Rµ〉+ C and i(Rµ)Θ= dm−1xµ. They are unique up to a term in the
characteristic distribution. Moreover [Rµ,Rν ] ∈ Γ(C).

Proof. For every p ∈ Pwe have the linear map Θ̃p : TpP→ Λm−1T∗
pP, with Θ̃p(Cp) = 0. Then,

Θ̃p(Rp/Cp) =Am−1
p (kerω), where both spacesRp/Cp andAm−1

p (kerω) have the same dimen-

sion. Then Θ̃p is an isomorphism between these spaces and, taking {dm−1xµ|p} as a local basis
in Am−1

p (kerω), there exists a unique solution to i((Rµ)p)Θp = dm−1xµ|p, up to a term in Cp.
This solution can be extended to the open neighbourhood U of p where the local chart of
coordinates is defined. The proof of the last assertion is the same as in the above case.

Note that, using adapted coordinates, the local Reeb vector fields introduced in propositions

3.11 and 3.13 read Rµ =
∂

∂sµ
.

3.3. Bundle structures in multicontact and premulticontact manifolds

Associated to a (pre)multicontact structure (Θ,ω) in a manifold P there are the two involut-
ive distributions: kerω and the Reeb distribution DR, with DR ⊂ kerω. We can consider the
corresponding quotient sets, M≡ P/kerω and E ≡ P/DR. From now on we assume:

Assumption. The quotients M and E are differentiable manifolds.
Hence we have the natural projections

τ : P −→ M
(xµ,uI,sµ,wr) .−→ (xµ) ,

ς : P −→ E
(xµ,uI,sµ,wr) .−→ (xµ,uI) ,

ε : E −→ M
(xµ,uI) .−→ (xµ) .

Furthermore, the form ω is obviously τ -projectable to a form ωM ∈Ωm(M), which is a volume
form in M. Therefore we can state:

Proposition 3.14. Every (pre)multicontact manifold (P,Θ,ω) is locally diffeomorphic to
a fiber bundle τ : P→M, where M is an orientable manifold with volume form ωM,
and ω = τ∗ωM.

17



J. Phys. A: Math. Theor. 56 (2023) 025201 M de León et al

From now on, we assume this as the canonical model for (pre)multicontact manifolds since,
in addition, this is the situation which is interesting in field theories. Thus, we consider a fiber
bundle τ : P→M, with dimM= m, dimP= m+N, and such thatM is an orientable manifold
with volume form ωM ∈Ωm(M). Let ω = τ∗ωM ∈Ωm(P). We always take local coordinates
(xµ,zA) in P (1! µ! m, 1! A! N), adapted to the bundle structure, and such that ω = dx1 ∧
· · ·∧ dxm ≡ dmx. The τ -vertical bundle is defined as

V(τ) =
⋃

p∈P
V(τp) =

⋃

p∈P
{v ∈ TpP | Tpτ(v) = 0} .

Let XV(τ)(P) denote the C∞(P)-module of τ -vertical vector fields and V(τ) the corres-
ponding τ -vertical distribution. A form α ∈Ωk(P) is τ -semibasic if i(Y)α= 0, for every
Y ∈ XV(τ)(P). LetAk(V(τ)) denote theC∞(P)-module of τ -semibasic k-forms andAk

p(V(τ))
the corresponding fiber at p ∈ P. We have that Γ(kerω) = XV(τ)(P).

Now, taking these forms ω ∈Ωm(P) andΘ ∈Ωm(P), definition 3.4 adapted to this context
(where condition (a) holds automatically) is:

Definition 3.15. The pair (Θ,ω) is a multicontact bundle structure and (P,Θ,ω) is said to
be a multicontact bundle if:

(a) rankDR = m.
(b) kerω ∩ kerΘ∩ kerdΘ= {0}.
(c) Am−1(kerω) = {i(R)Θ | R ∈R}.

The pair (Θ,ω) is a premulticontact bundle structure and (P,Θ,ω) is said to be a prem-
ulticontact bundle if, for 0< k! N−m, we have that:

(a) rankDR = m+ k.
(b) rank(kerω ∩ kerΘ∩ kerdΘ) = k.
(c) Am−1(kerω) = {i(R)Θ | R ∈R}.

In classical field theories we will be specially interested in the situation in which P= E ×
Λm−1(T∗M), where E →M is a (pre)multisymplectic bundle and, in particular, a jet bundle or
a bundle of forms.

3.4. Multicontact and premulticontact structures of variational type

Now, we are going to restrict the kind of (pre)multicontact structures we are interested in.
This is motivated by the following fact: If (P,Θ,ω) is a (pre)multicontact manifold, we can
introduce a system of pdes associated with the (pre)multicontact structure. We want these
equations, when expressed in coordinates, to coincide with those derived from the variational
formulation [49], which are also those obtained in the k-(co)contact formulation of non-
conservative field theories [46, 48, 61, 83]. This variational principle is an extension of the
Herglotz variational principle for contact mechanical systems. Nevertheless, in general, these
variational equations cannot be derived for any multicontact structure and then, in order to
achieve this, some additional conditions on the (pre)multicontact structure must be imposed.
So, a more restricted type of multicontact structures called ‘variational’ is introduced. For
them, those pdes are derived from the variational principle using the differential operator d
introduced in definition 3.8.

Therefore, as we will see in sections 4 and 5, in the particular case when P→M are certain
kinds of fiber bundles, we can formulate Lagrangian and Hamiltonian descriptions for these
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systems and the pdes associated with the ‘variational’ multicontact structure are the corres-
ponding Euler–Lagrange (Herglotz) equations and the Hamilton–de Donder–Weyl (Herglotz)
equations (we will maintain the usual terminology of the Lagrangian and the Hamiltonian
formalisms of multisymplectic field theories).

In this way we state:

Definition 3.16. If (P,Θ,ω) is a (pre)multicontact manifold such that

i(X)i(Y)Θ= 0 , for every X,Y ∈ Γ(kerω) , (11)

then (Θ,ω) is said to be a variational (pre)multicontact structure and (P,Θ,ω) is a vari-
ational (pre)multicontact manifold.

The terminology comes from the above comment and from the fact that this condition (11)
is precisely what is imposed to the multisymplectic potential forms in the multisymplectic
formulation of field theories in order to ensure that the theory is variational and, hence, it comes
from a Lagrangian (in these cases, kerω is just the vertical distribution on the corresponding
bundles).

Now, from the results stated in theorem 3.9 and corollary 3.10, we can prove a Darboux-like
theorem for this class of (pre)multicontact manifolds:

Theorem 3.17. If (P,Θ,ω)is a variational (pre)multicontact manifold, then there exist local
charts of adapted coordinates (U;xµ,uI,sµ,wr) (1! µ! m, 1! I! N−m− k, 1! r! k) in
P such that the local expression of the (pre)multicontact form Θ is

Θ|U = H(xν ,uI,sν)dmx+ fµI (x
ν ,uJ)duI ∧ dm−1xµ + dsµ ∧ dm−1xµ . (12)

Furthermore, in these coordinates,

σΘ|U = Γµ dxµ =
∂H
∂sµ

dxµ . (13)

Proof. Using the adapted coordinates introduced in theorem 3.9 and corollary 3.10,

kerω =
〈 ∂

∂uI
,
∂

∂sµ
,
∂

∂wr

〉
, DR =

〈 ∂

∂sµ
,
∂

∂wr

〉
, C =

{ ∂

∂wr

}
.

Taking into account condition (11) and propositions 3.11 and 3.13, we have that the local
expression of Θ must be, in general,

Θ= Hdmx+ fµI duI ∧ dm−1xµ + gµr dw
r ∧ dm−1xµ + dsµ ∧ dm−1xµ ,

whereH, fµI ,g
µ
r ∈ C∞(U). Now, bearing in mind (10), we conclude thatH≡ H(xµ,uI,sµ,wr),

fµI ≡ fµI (x
ν ,uJ), and gµr ≡ gµr (x

ν) (in the multicontact case, k= 0 and hence there are no
coordinates wr and no functions gµr ). Finally, consider lemma 3.5; in the multicontact case

C = {0} and then DR ∩ kerΘ= {0}; but, as DR =
〈 ∂

∂sµ

〉
, this implies that, in the general

case,
{ ∂

∂wr

}
⊂ Γ(kerΘ) and hence it must be gµr (x

ν) = 0 and (12) holds.

Finally, from proposition 3.6 and (12), we obtain (13).

In most physical models of field theory, (xµ) are spacetime coordinates, (uI) are coordinates
related to the physical fields, (wr) are gauge variables, and (sµ) are the ‘contact variables’
related to ‘damping’ or ‘dissipative’ phenomena and also to the variational action.
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3.5. (Pre)multicontact variational systems: field equations

The equations for variational multicontact and premulticontact bundles can be stated using
different geometric elements as follows:

Definition 3.18. Let (P,Θ,ω) be a variational (pre)multicontact bundle.

(a) The (pre)multicontact field equations for sections ψ : M→ P are

i(ψ(m))(Θ ◦ψ) = 0 , i(ψ(m))(dΘ ◦ψ) = 0 . (14)

(b) The (pre)multicontact field equations for τ -transverse, locally decomposable mul-
tivector fields X ∈ Xm(P) are

i(X)Θ= 0 , i(X)dΘ= 0 , (15)

where the condition of τ -transversality is usually imposed by requiring that i(X)ω = 1.
(c) The (pre)multicontact field equations for Ehresmann connections ∇ on P→M are

i(∇)Θ= (m− 1)Θ , i(∇)dΘ= (m− 1)dΘ . (16)

The relations among these kinds of field equations are given by the following results:

Theorem 3.19. If X ∈ Xm(P) is a representative of a class of τ -transverse and integrable m-
multivector fields {X}⊂ Xm(P) satisfying the (pre)multicontact field equations for multivector
fields (15), then the integral sections of X are solutions to the (pre)multicontact field equations
for sections (14).
Conversely, if ψ : M→ P is a solution to the (pre)multicontact field equations for

sections (14), then there exists a tubular neighborhood U⊂ P of Imψ and a τ -transverse
and integrable multivector field X ∈ Xm(U) such that:

(a) ψ is an integral section of X.
(b) X is a solution to the (pre)multicontact field equations for multivector fields (15) on Imψ.

Proof. If ψ is an integral section of a multivector field X ∈ Xm(P), then X ◦ψ = ψ(m), and
hence if (15) holds for X, then (14) holds for ψ, in the corresponding domains.

Conversely, if ψ : W⊂M→ P is a solution to (14) then, for every x ∈W there exists a
neighbourhoodWx ⊂W of x such thatψ(Wx)⊂ ψ(W). Sinceψ is a section and hence Imψ is an
embedded submanifold, the map ψ|Wx is an injective immersion and the mapΛm(ψ|Wx) defines
a locally decomposable multivector field on ψ(Wx)⊂ P which is tangent to ψ(Wx). Using
partitions of unity, this construction can be extended to the whole W, obtaining a multivector
field XW on Imψ and such that ψ is an integral section of XW , by construction. Finally, using
the local flow of τ -vertical vector fields, starting from Imψ and XW we generate a tubular
neighborhood U of Imψ and a multivector field X ∈ Xm(U). Then, since X ◦ψ = ψ(m), if
equation (14) holds for ψ on Imψ, then (15) holds for X on Imψ.

Theorem 3.20. The (integrable) Ehresmann connections ∇ which are the solutions to the
(pre)multicontact field equations for Ehresmann connections (16) are locally associated with
classes of (integrable) τ -transverse, locally decomposable multivector fields {X}⊂ Xm(P)
which are solutions to the (pre)multicontact field equations for multivector fields (15), and
conversely.
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Proof. In a chart of adapted coordinates the expressions of an Ehresmann connection ∇
on P and of a τ -transverse, locally decomposable multivector field X ∈ Xm(P), satisfying
i(X)ω = 1, are

∇= dxµ ⊗
(

∂

∂xµ
+FIµ

∂

∂uI
+Gν

µ
∂

∂sν
+ grµ

∂

∂wr

)
,

X =
m∧

µ=1

(
∂

∂xµ
+FIµ

∂

∂uI
+Gν

µ
∂

∂sν
+ grµ

∂

∂wr

)
.

Now, using definition 3.8, and the local expressions (12) and (13) we have that

dΘ= d(Hdmx+ fµI duI ∧ dm−1xµ)−
( ∂H
∂sµ

fµI duI+
∂H
∂sµ

dsµ
)
∧ dmx

=
(∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

)
duI ∧ dmx+

∂H
∂wr

dwr ∧ dmx+
∂fµI
∂uJ

duJ ∧ duI ∧ dm−1xµ , (17)

then equations (15) give

0= i(X)Θ= Gµ
µ + fµI F

I
µ +H ,

0= i(X)dΘ=
∂H
∂wr

dwr+
[
∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

+
(∂fµJ
∂uI

− ∂fµI
∂uJ

)
FJ

µ

]
duI

+

[(∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

)
FIν +

∂H
∂wr

grν +
(∂fµI
∂uJ

− ∂fµJ
∂uI

)
FJµF

I
ν

]
dxν . (18)

On the other hand, equations (16) read

0= i(∇)Θ− (m− 1)Θ= Gµ
µ + fµI F

I
µ +H ,

0= i(∇)dΘ− (m− 1)dΘ=
∂H
∂wr

dwr ∧ dmx

+

[
∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

+
(∂fµJ
∂uI

− ∂fµI
∂uJ

)
FJ

µ

]
duI ∧ dmx ,

and so, they lead to the same coordinate equations:

0= Gµ
µ + fµI F

I
µ +H ,

0=
∂H
∂wr

, (19)

0=
∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

+
(∂fµJ
∂uI

− ∂fµI
∂uJ

)
FJ

µ , (20)

where equation (19) are just compatibility conditions. Note that the coefficients on dxν in (18)
vanish identically when (19) and (20) are used.

Finally, if ∇ and the class {X} are locally associated, ∇ is integrable if, and only if, X is
integrable, since the corresponding associated distribution must be involutive.

As a last result, the field equations for sections can be expressed in an equivalent way
which is analogous to what is commonly used to write such equations in the multisymplectic
formulation of classical field theories (see [86]):

Proposition 3.21. The (pre)multicontact field equations for sections (14) are equivalent to

ψ∗Θ= 0 , ψ∗ i(Y)dΘ= 0 , for every Y ∈ X(P) . (21)
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Proof. In a chart of adapted coordinates (U;xµ,uI,sµ,wr) (see theorem 3.17), for every Y ∈
X(P), for every section ψ ∈ Γ(τ), and x ∈M, we have that

Y = aµ
∂

∂xµ
+ bI

∂

∂uI
+ cµ

∂

∂sµ
+ gr

∂

∂wr
,

ψ(x) = (xµ,uI(x),sµ(x),wr(x)) ,

ψ(m) =
m∧

µ=1

(
∂

∂xµ
+
∂uI

∂xµ
∂

∂uI
+
∂sν

∂xµ
∂

∂sν
+
∂wr

∂xµ
∂

∂wr

)
.

Therefore, using the local expressions (12) and (17), equations (14) read

0= i(ψ(m))(Θ ◦ψ) = ∂sµ

∂xµ
+ fµI

∂uI

∂xµ
+H ,

0= i(ψ(m))(dΘ ◦ψ) = ∂H
∂wr

dwr+
[
∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

+
(∂fµJ
∂uI

− ∂fµI
∂uJ

) ∂uJ

∂xµ

]
duI

+

[(∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

) ∂uI

∂xν
+
∂H
∂wr

∂gr

∂xν
+
(∂fµI
∂uJ

− ∂fµJ
∂uI

) ∂uJ

∂xµ
∂uI

∂xν

]
dxµ ,

and equations (21) read

0= ψ∗Θ=
(∂sµ

∂xµ
+ fµI

∂uI

∂xµ
+H

)
dmx ,

0= ψ∗ i(Y)dΘ=

(
∂H
∂wr

gr+
[
∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

+
(∂fµJ
∂uI

− ∂fµI
∂uJ

) ∂uJ

∂xµ

]
bI

+

[(∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

) ∂uI

∂xν
+
∂H
∂wr

∂gr

∂xν
+
(∂fµI
∂uJ

− ∂fµJ
∂uI

) ∂uJ

∂xµ
∂uI

∂xν

]
aµ
)
dmx .

Both of them lead to the same equations:

0=
∂sµ

∂xµ
+ fµI

∂uI

∂xµ
+H ,

0=
∂H
∂wr

, (22)

0=
∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

+
(∂fµJ
∂uI

− ∂fµI
∂uJ

) ∂uJ

∂xµ
, (23)

where equation (22) are not pdes, but compatibility conditions which relate the component
functions of the sections solution. Note that the equations

0=
(∂H
∂uI

− ∂H
∂sµ

fµI − ∂fµI
∂xµ

) ∂uI

∂xν
+
∂H
∂wr

∂gr

∂xν
+
(∂fµI
∂uJ

− ∂fµJ
∂uI

) ∂uJ

∂xµ
∂uI

∂xν

hold identically using (22) and (23).

Definition 3.22. A variational (pre)multicontact bundle (P,Θ,ω) along with some of the field
equations (14), (15) or (16) is said to be a (pre)multicontact system.

Remark 3.23. In the premulticontact case, in general, for the premulticontact system (P,Θ,ω),
the field equations for sections ψ : M→ P, multivector fieldsX ∈ Xm(P), and Ehresmann con-
nections ∇ on P are not compatible on P and a constraint algorithm must be implemented in
order to find a submanifold Pf ↪→ P (when it exists) where there are integrable distributions
whose associatedmultivector fieldsX and Ehresmann connections∇ are solutions to the prem-
ulticontact field equations on Pf and are tangent to Pf . In this situation note that the constraint

22



J. Phys. A: Math. Theor. 56 (2023) 025201 M de León et al

algorithm and the final solutions are independent of the Reeb vector fields selected for the
premulticontact system, as a consequence of the construction of σΘ (see proposition 3.6).

Remark 3.24. Summarizing, we have introduced different ways of setting the field equations
in classical field theories. The equations for sections, written in their two equivalent forms (14)
and (21), give straightforwardly the system of pdes to be solved for describing the behaviour of
the system. On the other hand, the equations for multivector fields (15) and connections (16)
give a more geometrical interpretation of the solutions (as distributions) that often make it
easier to study and characterize qualitative properties of such solutions. In particular, these
geometric characterizations are the most suitable in order to apply the constraint algorithms
in the case of premulticontact theories. Note that one can write these equations for a general
(pre)multicontact system although, if the structure is not variational, the resulting equations
may not correspond to those of the Herglotz principle for fields.

Finally, we generalize the concept of dissipated quantity (see [46, 48]) to this
(pre)multicontact setting.

Definition 3.25. Let (P,Θ,ω) be a (pre)multicontact system and let X ∈ Xm(P) be a solution
to the field equation (15). A differential form ξ ∈Ωm−1(P) is a dissipated quantity for this
system if i(X)dξ = 0.

In terms of a section ψ solution to the equivalent field equation (14) or (21), this condition
reads ψ∗dξ = 0.

4. Multicontact Lagrangian formalism

4.1. Geometric preliminaries

Let π : E→M be a fiber bundle over the spacetimeM, where dimM= m, dimE= m+ n, and
hence dimJ1π = m+ n+mn. In the Lagrangian setting, consider the bundle

P = J1π×M Λm−1(T∗M)/ J1π×Rm ,

whose natural projections are presented in the next diagram:

If (xµ,yi) are natural coordinates in E, then the induced natural coordinates in P are
(xµ,yi,yiµ,s

µ) where, taking {dm−1xµ} as the local basis of Λm−1(T∗M), we have that ξ =
sµ dm−1xµ, for every ξ ∈ Λm−1(T∗M).

Note that, since Λm−1(T∗M) is a bundle of forms over M, it is endowed with a canonical
structure θ ∈Ωm−1(Λm−1(T∗M)), the ‘tautological form’, which is defined as follows: for
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every ξ ≡ (x,ξ) ∈ Λm−1(T∗M) and X1
ξ, . . . ,X

m−1
ξ ∈ Tξ(Λm−1(T∗M)),

θξ(X1
ξ, . . . ,X

m−1
ξ ) := ξ

(
Tξτo(X1

ξ), . . . ,Tξτo(Xm−1
ξ )

)
.

Its local expression in natural coordinates is θ = sµ dm−1xµ.

Definition 4.1. The canonical action form is the differential form S ∈Ωm−1(P) defined as

S := τ∗1 θ ,

or, what is equivalent, at every point p ∈ P ,

Sp(X1
p, . . . ,X

m−1
p ) := τ1(p)τ(p)(Tpτ(X1

p), . . . ,Tpτ(Xm−1
p )) , for every X1

p, . . . ,X
m−1
p ∈ TpP .

Note that every sectionψ :M→ P of τ defines the (m− 1)-form τ1 ◦ψ ∈ Λm−1(T∗M) and
thenψ∗S= τ1 ◦ψ. It is also immediate to check that S is a τ -semibasic form, whose expression
in coordinates is

S= sµ dm−1xµ .

The terminology is justified because, as we will see in section 6, this form S is closely related
to the action of the system: in fact, dS is the Lagrangian action that appears in the action func-
tional (43) (see also (36)) and it is also related with the extended contact structures presented
in [22].

Definition 4.2. Letψ : M→ P be a section of the projection τ . Thenψ is a holonomic section
inP if the section ψ := ρ ◦ψ : M→ J1π is holonomic in J1π. We also say thatψ is the canon-
ical prolongation of ψ to P .

Then, we can write ψ = (ψ,s) = ( j1φ,s), where s : M→ Λm−1(T∗M) is a section of the
projection τ0 : Λm−1(T∗M)→M.

Definition 4.3. An m-multivector field Γ ∈ Xm(P) is a second-order partial differential
equation (or sopde) in P if

(a) it is τ -transverse,
(b) it is integrable,
(c) the multivector field X := ΛmTρ ◦Γ, which is obviously integrable and π̄1-transverse, is a

sopde in J1π.

An Ehresmann connection ∇ in P is a second-order partial differential equation (or
sopde) in P if

(a) it is integrable,
(b) the natural restriction of ∇ to J1π is a sopde in J1π.

The local expression of a sopde multivector field in P verifying the transversality condition
i(Γ)ω = 1 is

Γ=
m∧

µ=1

( ∂

∂xµ
+ yiµ

∂

∂yi
+Γiµν

∂

∂yiν
+ gνµ

∂

∂sν

)
.

On the other hand, the local expression of a sopde connection is

∇= dxµ ⊗
( ∂

∂xµ
+ yiµ

∂

∂yi
+Γiµν

∂

∂yiν
+ gνµ

∂

∂sν

)
.

24



J. Phys. A: Math. Theor. 56 (2023) 025201 M de León et al

As usual, multivector fields and connections in P which have these local expressions but are
not integrable are called semi-holonomic.

A straightforward consequence of the above definitions is thatΓ ∈ Xm(P) and∇ are sopdes
in P if, and only if, their integral sections are holonomic in P .

Finally, sinceP = J1π×M Λm−1(T∗M), the canonical endomorphism J of J1π can be exten-
ded toP in a natural way and has the same coordinate expression. Denoting this extension with

the same notation J, in natural coordinates J=
(
dyi− yiµdx

µ
)
⊗ ∂

∂yiν
⊗ ∂

∂xν
.

4.2. (Pre)multicontact Lagrangian systems

Now we can state the Lagrangian formalism of field theories with dissipation in the multicon-
tact setting.

A Lagrangian density is a τ -semibasic form L ∈Ωm(P). If ωM is the volume form in M,
we have that L= Lτ∗ωM , where L ∈ C∞(P) is the Lagrangian function associated to L.

Definition 4.4. The Lagrangian form associated to L is the form

ΘL =− i(J)dL−L+ dS ∈Ωm(P) ,

and then dΘL = dΘL +σΘL ∧ΘL .

In natural coordinates, the expression of the form ΘL is just (9), and the local function

EL :=
∂L
∂yiµ

yiµ − L is called the Lagrangian energy associated with L.

Remark 4.5. The (pre)multicontact form ΘL in P can also be obtained in an equivalent way
which is based on using the multisymplectic formalism for Lagrangian field theories (see
section 2.3): If we take the restriction of the Lagrangian function L ∈ C∞(P) to the fibers of
the projection τ 1 (it is obtained considering L with sµ ‘freezed’), as P = J1π×M Λm−1(T∗M),
these fibers are identified with J1π, and hence this restricted function is Ls ∈ C∞(J1π). There-
fore we can construct the Poincaré–Cartan m-form ΘLs ∈Ωm(J1π) associated with the Lag-
rangian density Ls = Ls π̄1∗ω, which has local expression

ΘLs =
∂Ls
∂yiµ

dyi ∧ dm−1xµ −
(
∂Ls
∂yiµ

yiµ − Ls

)
dmx .

Proposition 4.6. The Lagrangian form associated with L is ΘL =−ρ∗ΘLs + dS.

Now, consider the extended and the restricted multimomentum bundles Mπ and J1∗π
introduced in section 2.3. We can construct the extended and the restricted Legendre maps
F̃Ls : J1π→Mπ, and FLs := κ ◦ F̃Ls : J1π→ J1∗π associated with this ‘restricted’ Lag-
rangian function Ls ∈ C∞(J1π) whose local expressions coincide with (3). Remember that
Ls is a regular Lagrangian in J1π if FLs is a local diffeomorphism or, what is equivalent, if

the Hessian matrix
( ∂2Ls
∂yiµ∂y

j
ν

)
is everywhere regular (nondegenerate), and Ls is hyperregular

when FLs is a global diffeomorphism.
These considerations lead us to introduce the manifold P∗ := J1∗π×M Λm−1(T∗M), which

has natural coordinates (xµ,yi,pµi ,s
µ).
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Definition 4.7. The Legendre map associated with the Lagrangian function L ∈ C∞(P) is
the map FL : P → P∗ given by FL := (FLs, IdΛm−1(T∗M)),

The Legendre map is locally given by FL(xµ,yi,yiµ,sµ) =
(
xµ,yi,

∂L
∂yiµ

,sµ
)
.

Proposition 4.8. For a Lagrangian function L ∈ C∞(P), the following conditions are equi-
valent:

(a) The Legendre map FL is a local diffeomorphism.

(b) The Hessian matrix (Wµν
ij ) =

(
∂2L

∂yiµ∂y
j
ν

)
is regular everywhere.

(c) The Lagrangian form ΘL is a multicontact form in P and (ΘL,ω) is a multicontact
structure.

Proof. The equivalence between (a) and (b) can be easily proved using natural coordinates in
P and bearing in mind the local expression of the Legendre map FL.

For the equivalence with (c), bearing in mind definition 3.15 we observe that the multicon-
tact structure is characterized by the fact that Γ(C) = {0} or, what is equivalent, rankDR = m,
its lowest possible value, and this means that rankdΘL reaches its maximum value. But, from
proposition 4.6, we have that dΘL = ρ∗dΘLs , and then rankdΘL = rankdΘLs = dim J1π,
namely dΘLs is a multisymplectic form in J1π. As it is well-known from the multisymplectic
formulation of classical field theories, this happens if, and only if, Ls is a regular Lagrangian

in J1π, for every s= (sµ) ∈ Λm−1(T∗M), that is
(

∂2Ls
∂yiµ∂y

j
ν

)
is regular everywhere in J1π, for

every s, and since
∂2L

∂yiµ∂y
j
ν

(p) =
∂2Ls
∂yiµ∂y

j
ν

(ρ(p)), with s= τ1(p), condition (b) holds.

Definition 4.9. A Lagrangian function L ∈ C∞(P) is said to be regular if the equivalent
conditions in proposition 4.8 hold. Otherwise L is a singular Lagrangian. In particular, L is
said to be hyperregular if FL is a global diffeomorphism.

As we have seen, L is regular in P if, and only if, Ls is regular in J1π, for every s ∈
Λm−1(T∗M).

Remark 4.10. It is important to point out that non-regular Lagrangians can induce premul-
ticontact structures but also structures which are neither multicontact nor premulticontact. For

example, the Lagrangian L=
n∑

i=1

yiµs
µ yields a structure (ΘL,ω) which has no Reeb distribu-

tion associated to it.

Definition 4.11. The premulticontact bundle (P,ΘL,ω) is called a (pre)multicontact Lag-
rangian system.

Given a multicontact Lagrangian system (P,ΘL,ω), from lemma 3.11 we have that
the Reeb vector fields (RL)µ ∈RL ⊂ X(P) for this system are the unique solutions to
i((RL)µ)Θ= dm−1xµ. Then, since L is regular, there exists the inverse (Wij

µν) of the Hessian

matrix, namely Wij
µν

∂2L

∂yjν∂ykγ
= δikδ

γ
µ, and a simple calculation in coordinates leads to
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(RL)µ =
∂

∂sµ
−Wji

γν
∂2L

∂sµ∂yjγ

∂

∂yiν
.

Therefore, bearing in mind proposition 3.6 and (9), we see that

σΘL =− ∂L
∂sµ

dxµ . (24)

If (P,ΘL) is a premulticontact Lagrangian system, the Reeb vector fields are not uniquely
determined from the equation i((RL)µ)Θ= dm−1xµ.

Note that, in general, the natural coordinates in P are not adapted coordinates for the
(pre)multicontact structure (ΘL,ω). Nevertheless, the local expression of the dissipation form
is again (24), since the local expression of ΘL is always the same and (24) satisfies the condi-
tion of proposition 3.6, whose solution is unique.

4.3. The (pre)multicontact Lagrangian field equations

Bearing in mind definition 3.18, proposition 3.21, and theorems 3.19 and 3.20, we can define:

Definition 4.12. Let (P,ΘL,ω) be a (pre)multicontact Lagrangian system.

(a) The (pre)multicontact Lagrangian equations for holonomic sections ψ : M→ P are
i(ψ(m))(ΘL ◦ψ) = 0 , i(ψ(m))(dΘL ◦ψ) = 0 . (25)

or equivalently

ψ∗ΘL = 0 , ψ∗ i(Y)dΘL = 0 , for every Y ∈ X(P) . (26)

(b) The (pre)multicontact Lagrangian equations for τ -transverse, locally decomposable
multivector fields XL ∈ Xm(P) are

i(XL)ΘL = 0 , i(XL)dΘL = 0 , (27)

where the condition of τ -transversality is imposed by requiring that i(XL)ω = 1.
An m-multivector field solution to these equations is called a Lagrangian multivector
field.

(c) The (pre)multicontact Lagrangian equations for Ehresmann connections∇L on P →
M are

i(∇L)ΘL = (m− 1)ΘL , i(∇L)dΘL = (m− 1)dΘL . (28)

An Ehresmann connection solution to these equations is called a Lagrangian connection.

Proposition 4.13. Let (P,ΘL,ω) be a multicontact (i.e. regular) Lagrangian system. Then:

(a) The multicontact Lagrangian field equations for multivector fields (27) and for Ehresmann
connections (28) have solutions on P . The solutions are not unique if m> 1.

(b) The Lagrangian m-multivector fields XL solution to equation (27) and the corresponding
Ehresmann connections ∇L in P which are associated with the classes {XL} and are
solutions to (28), are semi-holonomic.

(c) In addition, if XL and ∇L are semi-holonomic and integrable solutions, namely sopdes,
their integral sections are solutions to the multicontact Euler–Lagrange field equation (25)
or (26).
In this case, these sopdes XL and ∇L are called the Euler–Lagrange multivector fields
and connections associated with the Lagrangian function L.
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Proof. In a natural chart of coordinates of P , for an m-multivector field

XL =
m∧

µ=1

(
∂

∂xµ
+(XL)

i
µ
∂

∂yi
+(XL)

i
µν

∂

∂yiν
+(XL)

ν
µ
∂

∂sν

)
∈ Xm(P) ,

or for the Ehresmann connection ∇L in P associated with the class {XL},

∇L = dxµ ⊗
(

∂

∂xµ
+(XL)

i
µ
∂

∂yi
+(XL)

i
µν

∂

∂yiν
+(XL)

ν
µ
∂

∂sν

)
,

bearing in mind definition 3.8 and the local expressions (9) and (24) we have that

dΘL = d
(
− ∂L
∂yiµ

dyi ∧ dm−1xµ +
( ∂L
∂yiµ

yiµ − L
)
dmx
)
+

(
∂L
∂sµ

∂L
∂yiµ

dyi− ∂L
∂sµ

dsµ
)
∧ dmx ,

and equations (27) and (28) lead to

0= L+
∂L
∂yiµ

(
(XL)

i
µ − yiµ

)
− (XL)

µ
µ , (29)

0=
(
(XL)

j
µ − yjµ

) ∂2L

∂vjµ∂sν
, (30)

0=
(
(XL)

j
µ − yjµ

) ∂2L

∂vjµ∂xν
, (31)

0=
(
(XL)

j
µ − yjµ

) ∂L

∂yiν∂y
j
µ

, (32)

0=
(
(XL)

j
µ − yjµ

) ∂2L

∂yi∂yjµ
+
∂L
∂yi

− ∂2L
∂xµ∂yiµ

− ∂2L
∂sν∂yiµ

(XL)
ν
µ

− ∂2L
∂yj∂yiµ

(XL)
j
µ −

∂2L

∂yjν∂yiµ
(XL)

j
µν +

∂L
∂sµ

∂L
∂yiµ

, (33)

and a last group of equations which are identities when they are combined with the above ones.
If L is a regular Lagrangian, equation (32) give

yiµ = (XL)
i
µ , (34)

which are the conditions for the multivector field XL and the connection ∇L to be semi-
holonomic. Then, (30) and (31) hold identically, and (29) and (33) give

(XL)
µ
µ = L ,

∂L
∂yi

− ∂2L
∂xµ∂yiµ

− ∂2L
∂yj∂yiµ

yjµ −
∂2L

∂sν∂yiµ
(XL)

ν
µ −

∂2L

∂yjν∂yiµ
(XL)

j
µν =− ∂L

∂sµ
∂L
∂yiµ

.

These equations have always solution since the Hessian matrix
(

∂2L

∂yjν∂yiµ

)
is regular

everywhere.
Finally, if these semi-holonomic multivector fields XL and connections∇L are integrable,

by (34), they are sopdes and these last equations transform into

∂sµ

∂xµ
= L ◦ψ , (35)

∂

∂xµ

(
∂L
∂yiµ

◦ψ
)

=

(
∂L
∂yi

+
∂L
∂sµ

∂L
∂yiµ

)
◦ψ ,
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which are the coordinate expression of the Lagrangian equation (25) or (26) for the integral
sections of XL and ∇L.

Of course all these equations are the same as those obtained in the k-cocontact formulation
of non-conservative field theories [83] and also match those of k-contact formalism when the
Lagrangian function does not depend on the spacetime variables xµ [48, 61]. Furthermore,
equation (35) relates the canonical action form with the variational formulation through the
Lagrangian density (see (43)). In fact, we have the following.

Corollary 4.14. If ψ is a holonomic section such that ψ∗ΘL = 0, we have that

d(S ◦ψ) = L ◦ψ . (36)

Proof. It is immediate since (35) is the coordinate expression of (36).

Remark 4.15. As in the case of premultisymplectic field theories, when L is not regular and
(P,ΘL,ω) is a premulticontact system, the field equations (25), (26), (27) or (28) have no
solutions everywhere on P , in general. In the most favourable situations, these equations have
solutions on a submanifold ofP which is obtained by applying a suitable constraint algorithm.
Nevertheless, solutions to equation (27) or (28) are not necessarily sopdes and, as a con-
sequence, if they are integrable, their integral sections are not necessarily holonomic; so this
requirement must be imposed as an additional condition. Hence, the final objective consists
in finding the maximal submanifold Sf of P where there are holonomic distributions whose
associated Lagrangian multivector fields XL and connections ∇L are sopde solutions to the
premulticontact Lagrangian field equations on Sf and are tangent to Sf.

5. Multicontact Hamiltonian formalism

5.1. The (hyper)regular case

Consider a multicontact Lagrangian system (P,ΘL,ω), where L is a hyperregular Lagrangian
(the case in which L is regular is the same but changing P and P∗ by the corresponding open
sets). Like in the Lagrangian formalism, we have the diagram

Since FL and FLs are global diffeomorphisms (for every s), we have that FLs(J1π) = J1∗π
and henceFL(P) = P∗. Furthermore, the canonical action form S ∈Ωm(P) isFL-projectable
to an m-form in P∗ which has the same coordinate expression and is denoted with the same
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notation S ∈Ωm(P∗). The same goes for the multicontact form ΘL ∈Ωm(P): there exists an
m-form ΘH ∈Ωm(P∗) such that ΘL = FL∗ΘH, whose local expression is

ΘH =−pµi dyi ∧ dm−1xµ +Hdmx+ dsµ ∧ dm−1xµ , (37)

whereH ∈ C∞(P∗) is theHamiltonian function defined byEL = FL∗Hwhose local expres-
sion is H= pµi (FL−1)∗yiµ − (FL−1)∗L.

Proposition 5.1. The formΘH is a multicontact form and hence (P∗,ΘH,ω) is a multicontact
bundle.

Proof. From the coordinate expression (37) it is immediate to check that the conditions in
definition 3.15 hold in this case. It is also a straightforward consequence of the fact that FL is
a diffeomorphism, that ΘL = FL∗ΘH and that ΘL is a multicontact form.

Remark 5.2. Themulticontact formΘH inP∗ can also be obtained in the following alternative
way, which is based on using the multisymplectic formalism for hyperregular Hamiltonian
field theories (see section 2.3):Mπ is endowed with the canonical multimomentum Liouville
m-form whose local expression is given in (4). We can construct the map h := F̃Ls ◦FL−1

s
(which is a section of the projection p : Mπ→ J1∗π (see diagram (5)), and then we define
the Hamilton–Cartan m-form Θh := h∗Θ̃ ∈Ωm(J1∗π), whose local expression is given in (6).
Finally, the multicontact form ΘH ∈Ωm(P∗) is

ΘH =−5∗Θh + dS ,

where we have also denoted S= τ̃∗1 θ.

Definition 5.3. The triple (P∗,ΘH,ω) is called a multicontact Hamiltonian system.

Observe that the natural coordinates in P∗ are adapted coordinates for the multicontact
structure (ΘH,ω). In particular, the Reeb vector fields (RH)µ ∈RH for this multicontact struc-

ture are (RH)µ =
∂

∂sµ
and hence, bearing in mind proposition 3.6 and equation (37), we obtain

that

σH =
∂H
∂sµ

dxµ . (38)

For this multicontact Hamiltonian system, the multicontact field equations come straight-
forwardly from definition 3.18, proposition 3.21, and theorems 3.19 and 3.20.

Definition 5.4. Let (P∗,ΘH,ω) be a multicontact Hamiltonian system.

(a) Themulticontact Hamilton–de Donder–Weyl equations for sections ψ : M→ P∗ are

i(ψ(m))(ΘH ◦ψ) = 0 , i(ψ(m))(dΘH ◦ψ) = 0 . (39)

or, equivalently,

ψ∗ΘH = 0 , ψ∗ i(Y)dΘH = 0 , for every Y ∈ X(P∗) . (40)

(b) The multicontact Hamilton–de Donder–Weyl equations for τ̃ -transverse, locally
decomposable multivector fields XH ∈ Xm(P∗) are
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i(XH)ΘH = 0 , i(XH)dΘH = 0 ; (41)

where the condition of τ̃ -transversality is imposed by requiring that i(XH)ω = 1.

(c) The multicontact Hamilton–de Donder–Weyl equations for Ehresmann connections
∇H on P∗ →M are

i(∇H)ΘH = (m− 1)ΘH , i(∇H)dΘH = (m− 1)dΘH . (42)

All these equations are compatible in P∗.
In natural coordinates, bearing inmind definition 3.8 and the local expressions (37) and (38),

we have

dΘH = d(−pµi dyi ∧ dm−1xµ +Hdmx)+
( ∂H
∂sµ

pµi dy
i− ∂H

∂sµ
dsµ
)
∧ dmx .

Then, if

XH =
µ∧( ∂

∂xµ
+(Xµ)

i ∂

∂yi
+(Xµ)

ν
i
∂

∂pνi
+(Xµ)

ν ∂

∂sν

)

is a multivector field solution to (41), and

∇H = dxµ ⊗
( ∂

∂xµ
+(Xµ)

i ∂

∂yi
+(Xµ)

ν
i
∂

∂pνi
+(Xµ)

ν ∂

∂sν

)

is the Ehresmann connection in P∗ associated with the class {XH} and it is solution to (42),
these field equations lead to

(Xµ)
µ = pµi

∂H
∂pµi

−H , (Xµ)
i =

∂H
∂pµi

, (Xµ)
µ
i =−

(
∂H
∂yi

+ pµi
∂H
∂sµ

)
,

together with a last group of equations which are identities when the above ones are taken into
account. If ψ(x) = (xµ,yi(x),pµi (x),s

µ(x)) is an integral section of XH and ∇H, then it is a
solution to the equation (39) or (40), which read

∂sµ

∂xµ
=

(
pµi

∂H
∂pµi

−H
)
◦ψ ,

∂yi

∂xµ
=
∂H
∂pµi

◦ψ ,
∂pµi
∂xµ

=−
(
∂H
∂yi

+ pµi
∂H
∂sµ

)
◦ψ .

As in the Lagrangian case, these equations match those obtained in the k-contact and k-
cocontact formulations of non-conservative field theories [46, 61, 83].

Remark 5.5. For multicontact Lagrangian systems (P,ΘL,ω) and their associated multicon-
tact Hamiltonian systems (P∗,ΘH,ω), sinceFL is a diffeomorphism, the solutions to the Lag-
rangian field equations are in one-to-one correspondence to those of the Hamilton–de Donder–
Weyl field equations.

5.2. The singular case

For singular Lagrangians, the existence of an associated Hamiltonian formalism is not assured,
in general, unless some minimal regularity conditions are assumed. Then, as it is usual for
singular Lagrangian field theories, we introduce the notion of almost-regular Lagrangian.
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Definition 5.6. A singular Lagrangian L ∈ C∞(P) is almost-regular if

(a) P∗
0 := FL(P) is a submanifold of P∗,

(b) FL is a submersion onto its image,
(c) the fibers FL−1(p) are connected submanifolds of P , for every p ∈ P∗

0 .

In order to construct a (pre)multicontact structure on P∗
0 we follow a procedure similar

to the one described in remark 5.2. Like in the regular case, we have that L ∈ C∞(P) is an
almost-regular Lagrangian onP if, and only if, Ls ∈ C∞(J1π) is an almost-regular Lagrangian
on J1π. Therefore, following the patterns of the multisymplectic formalism for almost-regular
Hamiltonian field theories (see section 2.3) we have the submanifolds P0 := FLs(J1π) and
P̃0 := F̃Ls(J1π) (see the diagram (7)). Then, taking h̃ := p̃−1, we define the Hamilton–Cartan
m-formΘ0

h = (̃0 ◦ h̃)∗Θ̃ ∈Ωm(P0), and, taking the Hamiltonian function H0 ∈ C∞(P0) such
that EL = FL ∗

s0H0, the local expression of this form coincides with the one given in (8). Now,
as a consequence of the definition of the Legendre map FL (definition 4.7), we have that
P∗
0 = P0 ×Λm−1(T∗M), and so the diagram depicting the Hamiltonian formalism is

Finally, we construct the form

Θ0
H =−5∗

0Θ
0
h + dS ∈Ωm(P∗

0 ) ,

whose local expression is

Θ0
H = ∗0 (−pνi dyi ∧ dm−1xµ)+H0 dmx+ dS .

Note that, since ΘLs = FL ∗
s0Θ

0
h, we have that ΘL = FL ∗

0 Θ0
H.

Proposition 5.7. The pair (Θ0
H,ω) is a premulticontact structure if, and only if, (ΘL,ω) is a

premulticontact structure.

Proof. Since FL0 is a submersion, for every Z ∈ X(P∗
0 ) there exist Y ∈ X(J1π) such that

FL0∗Y= Z. Therefore, as ΘL = FL ∗
0 Θ0

H, taking into account that FL0 is a submersion, we
have that

0= i(Y)ΘL = i(Y)(FL ∗
0 Θ0

H) = FL ∗
0 [i(Z)Θ

0
H] ⇐⇒ i(Z)Θ0

H = 0 ,

and the same holds for dΘL = FL ∗
0 dΘ0

H and ω = FL ∗
0 ω. Hence Z ∈ Γ(kerω ∩ kerΘ0

H ∩
kerdΘ0

H)≡ Γ(CH) if, and only if, Y ∈ Γ(kerω ∩ kerΘL ∩ kerdΘL)≡ Γ(CL). Note that
rankCL = rankCH + rank(ker FL0∗)

In the samewaywe can prove that, if RH ∈ X(P∗
0 ) and RL ∈ X(J1π) is such thatFL0∗RL =

RH, then RH ∈RH is a Reeb vector field for (Θ0
H,ω) if, and only if, RL ∈RL is a Reeb vector

field for (ΘL,ω). As a consequence rankDRL = rankDRH + rank(ker FL0∗).
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Definition 5.8. The triple (P∗
0 ,Θ

0
H,ω) is the premulticontact Hamiltonian system associ-

ated to the premulticontact Lagrangian system (P,ΘL,ω).

Remark 5.9. In the premulticontact case, for the premulticontact Hamiltonian system
(P∗

0 ,Θ
0
H,ω), the field equations for sections ψ : M→ P∗

0 , multivector fields XH0 ∈ Xm(P∗
0 ),

and Ehresmann connections∇H0 on P∗
0 are like (39), (40), (41), and (42), withΘ0

H instead of
ΘH. In general, these equations are not compatible on P∗

0 and the usual constraint algorithm
must be implemented in order to find the final constraint submanifold P∗

f ↪→ P∗
0 (if it exists)

where there are integrable distributions associated with the solutions to the field equations,
which are tangent to P∗

f .

6. Variational formulation

There have been several attempts to generalize the Herglotz variational principle to field
theories [54]. In [72] a variational principle is presented for Lagrangians with closed action
dependence. Later, in [51], a principle based on Lagrange multipliers has been used to derive
equations of Gravity with dissipation. The problem has been studied in more detail in [49].
There, it is shown how the variational principle based on Lagrange multipliers requires that
the Lagrangian has closed action dependence, namely the dissipation form is closed. This
condition is also required to develop higher-order Lagrangian field theories. The variational
principle for the general case is more involved. In this section, we will see how the mul-
ticontact formalism is related to the Herglotz variational principle for fields when the dissipa-
tion form is closed (for further details on the Herglotz variational principle for fields theories
see [49]).

Consider a (pre)multicontact Lagrangian system (P,ΘL,ω). Let Γhol(τ) be the set of holo-
nomic sections ψ : M→ P . We define the following action functional

AP : Γhol(τ) −→ R
ψ .−→

ˆ
M
ψ∗dS , (43)

where the convergence of the integral is assumed.

Definition 6.1 (Herglotz Principle for Fields: Lagrangian case). The Herglotz variational
problem for the (pre)multicontact Lagrangian system (P,ΘL,ω) consists in finding sections
ψ ∈ Γhol(τ) satisfying that ψ

∗ΘL = 0 and that are critical sections of the functional AP with
respect to the variations of ψ given byψs = σs ◦ψ, where {σs} is a local one-parameter group
of any compact-supported τ -vertical vector field Z in P; that is, it verifies that

ψ∗ΘL = 0 ,
d
ds

∣∣∣∣
s=0

ˆ
M
ψ∗
s dS= 0 .

Proposition 6.2. Let (P,ΘL,ω) be a closed (pre)multicontact Lagrangian system, namely
σΘL is closed. A holonomic section ψ : M→ P is a solution to the (pre)multicontact Lag-
rangian equation (25) or (26) if, and only if, it is a solution to the Herglotz Principle 6.1.

Proof. Following the ideas of [49, 51], we consider the Herglotz principle as a constraint
variational principle. Then,ψ is a solution to the Herglotz principle if, and only if, there exists
a function λ ∈ C∞(M), the Lagrange multiplier, such that ψ is critical for the functional
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ˆ
M
ψ∗
s

(
dS+λΘL

)
.

Let Z be a compact-supported τ -vertical vector field onP , andU⊂M an open set such that ∂U
is a (m− 1)-dimensional manifold and τ(supp(Z))⊂ U. The corresponding variation is given
by ψs = σs ◦ψ, where {σs} is a local one-parameter group of Z. Then, as a consequence of
Stoke’s theorem and the assumptions made on the supports of the vertical vector fields, we
have that

0=
d
ds

∣∣∣∣
s=0

ˆ
M
ψ∗
s

(
dS+λΘL

)
=

ˆ
U
ψ∗ (LZdS+λLZΘL

)

=

ˆ
U
ψ∗ (d i(Z)dS+λd i(Z)ΘL +λ i(Z)dΘL

)

=

ˆ
U
ψ∗ (−dλ∧ i(Z)ΘL +λ i(Z)dΘL)+

ˆ
∂U
ψ∗ (i(Z)dS+λ i(Z)ΘL

)

=

ˆ
U
ψ∗ (−dλ∧ i(Z)ΘL +λ i(Z)dΘL) .

Thus, we conclude that ψ is a solution to the Herglotz variational problem if, and only if,

ψ∗ΘL = 0 , ψ∗ (−dλ∧ i(Z)ΘL +λ i(Z)dΘL) = 0 , (44)

for every compact-supported τ -vertical vector field Z ∈ X(P). Since the compact-supported
vector fields locally generate the C∞(P)-module of vector fields in P , it follows that the last
equality holds for every τ -vertical vector field Z ∈ X(P). In particular, if Z is a Reeb vector
field R, then

0=ψ∗ (−dλ∧ i(R)ΘL +λ i(R)dΘL) =ψ
∗ (−dλ∧ i(R)ΘL +λσΘL ∧ i(R)ΘL) .

Taking λ )= 0 we have that σΘL =
1
λ
dλ and, in particular, dσΘL = 0, as it is required in the

hypotheses. Substituting the value of λ in (44) we get

0=ψ∗ (−dλ∧ i(Z)ΘL +λ i(Z)dΘL) = λψ∗ (−σΘL ∧ i(Z)ΘL + i(Z)dΘL)

= λψ∗ (i(Z)(σΘL ∧ΘL)+λ i(Z)dΘL) = λψ∗ i(Z)d̄ΘL ,

for every τ -vertical vector field Z ∈ X(P).

In the same way we can state an analogous variational principle for the Hamiltonian case.
In this case, if (P∗,ΘH,ω) is a multicontact Hamiltonian system, we have to introduce the
functional

AP∗ : Γ(τ̃) −→ R
ψ .−→

ˆ
M
ψ∗dS ,

where the convergence of the integral is assumed.

Definition 6.3 (Herglotz Principle for Fields: Hamiltonian case). The Herglotz variational
problem for the multicontact Hamiltonian system (P∗,ΘH,ω) consists in finding sections
ψ ∈ Γ(τ̃) satisfying that ψ∗ΘH = 0 and that are critical sections of the functional AP∗ with
respect to the variations of ψ given byψs = σs ◦ψ, where {σs} is a local one-parameter group
of any compact-supported τ̃ -vertical vector field Z in P; that is, it verifies that
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ψ∗ΘH = 0 ,
d
ds

∣∣∣∣
s=0

ˆ
M
ψ∗
s dS= 0 .

Following the same ideas as in proposition 6.2 we can prove the following result:

Proposition 6.4. Let (P∗,ΘH,ω) be a closed (pre)multicontact Hamiltonian system. A
sectionψ : M→ P∗ is a solution to the multicontact Hamilton–de Donder–Weyl equation (39)
or (40) if, and only if, it is a solution to the Herglotz Principle 6.3.

Finally, this result can be generalized to a variational (pre)multicontact system (P,Θ,ω) in
general. Thus, in an open set U⊂ P where the adapted coordinates given in proposition 3.17
are defined, we can introduce the form S= sµ dm−1xµ and define the action functional

AP : Γ(τ) −→ R
ψ .−→

ˆ
U
ψ∗dS=

ˆ
U
ψ∗(dsµ ∧ dm−1xµ) .

The corresponding principle is the following:

Definition 6.5 (Herglotz Principle for Fields: General case). The Herglotz variational
problem for the variational (pre)multicontact system (P,Θ,ω) consists in finding sections
ψ : τ(U)⊂M→ P satisfying that ψ∗Θ= 0 and that are critical sections of the functional AP

with respect to the variations of ψ given by ψs = σs ◦ψ, where {σs} is a local one-parameter
group of any compact-supported τ -vertical vector field Z in U.

Using the same argument as in proposition 6.2, we have the following result:

Proposition 6.6. Let (P,Θ,ω) be a closed variational (pre)multicontact system. A section
ψ : τ(U)⊂M→ P is a solution to the (pre)multicontact field equation (14) or (21) if, and
only if, it is a solution to the Herglotz Principle 6.5.

7. Examples

In this section we give some examples of multicontact field theories. In the first one, we recover
the notion of cocontact mechanical system for time-dependent non-conservative systems as
a particular case of a multicontact system. The second examples describes the Hamiltonian
formalism for a vibrating string with time-dependent damping. In the last example, we develop
the Lagrangian formalism for the Maxwell’s equations with damping. In what follows we
mainly use the field equations expressed for multivector fields.

7.1. Time-dependent contact mechanical systems

In a recent paper [21], a new geometrical framework, called cocontact structure, has been
introduced in order to develop a geometric formulation for time-dependent contact mechanical
systems, both in the Hamiltonian and Lagrangian settings. In this section we see that this
cocontact formulation is just a particular case of the multicontact setting introduced in the
present paper.

Consider a cocontact Hamiltonian system (M,τ,η,H) where (M,τ,η) is a cocontact man-
ifold of dimension 2n+ 2 and H : M→ R is a Hamiltonian function. Recall that on every
cocontact manifold there exist local charts (t,qi,pi,s) around every point in M such that

τ = dt , η = ds− pidqi ,
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and the Reeb vector fields read Rt = ∂/∂t and Rs = ∂/∂s. The cocontact Hamiltonian
equations for a vector field X ∈ X(M) are (2) and the solution to these equations is called
the cocontact Hamiltonian vector field, which is denoted XH . Its local expression in Darboux
coordinates is

XH =
∂

∂t
+
∂H
∂pi

∂

∂qi
−
(
∂H
∂qi

+ pi
∂H
∂s

)
∂

∂pi
+

(
pi
∂H
∂pi

−H
)
∂

∂s
. (45)

Every cocontact structure (τ,η) on a manifold M along with a Hamiltonian function H
allow us to define a multicontact 1-form Θ ∈Ω1(M) given by

Θ= Hτ + η .

In fact, we can take the 1-form ω = τ . In this case, we have

kerω = kerτ =
〈
∂

∂qi
,
∂

∂pi
,
∂

∂s

〉
, R=

〈
∂

∂s

〉
.

The conditions stated in definition 3.4 hold obviously for this structure taking into account that
k= 0, m= 1, and N= 2n+ 1, and that A0(kerω) = C∞(M). In addition, it is easy to check

that σΘ =
∂H
∂s

dt. In coordinates, we have

dΘ=
∂H
∂qi

dqi ∧ dt+
∂H
∂pi

dpi ∧ dt+
∂H
∂s

ds∧ dt+ dqi ∧ dpi ,

dΘ=

(
∂H
∂qi

+ pi
∂H
∂s

)
dqi ∧ dt+

∂H
∂pi

dpi ∧ dt+ dqi ∧ dpi .

Consider now a vector field X ∈ X1(M) with local expression

X= f
∂

∂t
+Fi ∂

∂qi
+Gi

∂

∂pi
+ g

∂

∂s
.

Imposing equation (15), we obtain

f = 1 ,

g = piF i−H ,

Gi =−
(
∂H
∂qi

+ pi
∂H
∂s

)
,

Fi =
∂H
∂pi

,

0 =

(
∂H
∂qi

+ pi
∂H
∂s

)
Fi+Gi

∂H
∂pi

,

where the last equation holds identically when the above ones are taken into account. Thus,
the local expression of the vector field X is

X=
∂

∂t
+
∂H
∂pi

∂

∂qi
−
(
∂H
∂qi

+ pi
∂H
∂s

)
∂

∂pi
+

(
pi
∂H
∂pi

−H
)
∂

∂s
.

This local expression coincides with (45). Thus, we have checked that time-dependent
contact mechanics is a particular case of the multicontact setting introduced in the
present work.

Conversely, given a multicontact structure (Θ,ω) with m= 1, consider the 1-forms τ = ω
and η =Θ−Hω. Taking into account that ω is closed, it is easy to check that τ ∧ η ∧ (dη)n is
a volume form on M and thus (τ,η) define a cocontact structure on M.
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7.2. A vibrating string with time-dependent damping

In this second example we are going to study the Hamiltonian formulation of a damped vibrat-
ing string in the multicontact setting.

It is well known that the vibration of a string can be described by a function u= u(t,x),
where t denotes the time, x denotes the position on the string and u is the distance of a point
in the string from its equilibrium position. This system can be described by the Hamiltonian
function

H=
1
2ρ

(pt)2 − 1
2τ

(px)2 ,

where pt and px are the momenta with respect to the coordinates t and x respectively. In [46] the
authors show that we can modify this Hamiltonian function and, using the k-contact formalism
for field theories with dissipation, model a vibrating string with linear damping. The modified
Hamiltonian is

H= H− γst ,

where γ ∈ R is the damping constant and st is one of the dissipation variables introduced in
the k-contact formalism.

In this example, we consider a time-dependent damping and hence, γ = γ(t) is a function
of time. This situation can be described using the fiber bundle τ : P →M, where M is an
orientable manifold with coordinates (t, x) and volume form ω = dt∧ dx, and P has adapted
coordinates (t,x,u,pt,px,st,sx). Consider the form

ΘH = Hdt∧ dx+ ηt ∧ dx− ηx ∧ dt ∈Ω2(P) ,

where ηt = dst− ptdu and ηx = dsx− pxdu. Hence,

ΘH = Hdt∧ dx+ dst ∧ dx− ptdu∧ dx− dsx ∧ dt+ pxdu∧ dt ,

dΘH = dH∧ dt∧ dx− dpt ∧ du∧ dx+ dpx ∧ du∧ dt

=
pt

ρ
dpt ∧ dt∧ dx− px

τ
dpx ∧ dt∧ dx+ γ(t)dst ∧ dt∧ dx− dpt ∧ du∧ dx+ dpx ∧ du∧ dt .

The 1-form σΘ defined in proposition 3.6 is σΘ = γ(t)dt, and then

dΘH = dΘH +σΘ ∧ΘH

=
pt

ρ
dpt ∧ dt∧ dx− px

τ
dpx ∧ dt∧ dx−dpt ∧ du∧ dx+dpx ∧ du∧ dt−ptγ(t)dt∧ du∧ dx .

Let X ∈ X2(P) be a locally decomposable, integrable and transverse two-multivector field.
Then, X= X1 ∧X2 where

X1 = f1
∂

∂t
+F1

∂

∂u
+G1

1
∂

∂pt
+G2

1
∂

∂px
+ g11

∂

∂st
+ g21

∂

∂sx
,

X2 = f2
∂

∂x
+F2

∂

∂u
+G1

2
∂

∂pt
+G2

2
∂

∂px
+ g12

∂

∂st
+ g22

∂

∂sx
.

Now,

0= i(X)ΘH = i(X1 ∧X2)ΘH = i(X2) i(X1)Θ= f1f2H− f1F2px+ f1g22 − f2F1pt+ f2g11 . (46)
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On the other hand,

0= i(X)dΘH = i(X1 ∧X2)dΘH = i(X2) i(X1)dΘH

=

(
−f2F1ptγ(t)−F1G2

2 − f2G1
1
pt

ρ
+ f2G2

1
px

τ
+F2G2

1

)
dt

+

(
−f1F 2ptγ(t)− f1G1

2
pt

ρ
+ f1G2

2
px

τ
+F1G1

2 −F2G1
1

)
dx

+
(
f1f2ptγ(t)+ f1G2

2 + f2G1
1

)
du

+

(
f1f2

pt

ρ
− f2F1

)
dpt+

(
−f1f2

px

τ
− f1F2

)
dpx .

The transversality condition i(X)ω = 1 implies f1 = f2 = 1, and hence we get the conditions

F1 =
pt

ρ
, (47)

F2 =−px

τ
, (48)

G1
1 +G2

2 =−ptγ(t) . (49)

Note that the terms in dt and dx also give equation (49). Now, taking into account condi-
tions (47) and (48), equation (46) yields

g11 + g22 =
(pt)2

ρ
− (px)2

τ
−H=

(pt)2

ρ
− (px)2

τ
− γ(t)st .

Let ψ = (t,x,u,pt,px,st,sx) be an integral section of X. Then, we have that

∂2u
∂t2

− τ

ρ

∂2u
∂x2

+ γ(t)
∂u
∂t

= 0 ,

which is the equation of a vibrating string with a time-dependent damping.

7.3. Maxwell’s equations

This last example is devoted to study the Lagrangian formulation of Maxwell’s equations with
charges and currents with a non-conservative term using the multicontact formulation.

A non-conservative version of Maxwell’s equations in the context of contact geometry was
first derived in [72] from variational principles. Subsequently, it has been formalized using
k-contact geometry in [50, 61]. Here we describe this theory using multicontact geometry. For
the physical consequences of the derived equations and its applications to electromagnetism
in materials, see [50, 72].

LetM be a 4-dimensional manifold representing the spacetime, P→M the principal bundle
with structure group U(1) and π : C→M the associated bundle of connections (see [17] for
more details). Following the multicontact Lagrangian formalism developed in section 4, we
define P = J1π×M Λm−1(T∗M), with local coordinates (xµ,Aµ,Aµ,ν ,sµ) such that ω = dx0 ∧
dx1 ∧ dx2 ∧ dx3. The electromagnetic Lagrangian with a linear dissipation term is

L=− 1
4µ0

gαµgβνFµνFαβ −AαJα − γαsα ,

where Fµν = Aν,µ −Aµ,ν is the electromagnetic tensor field, Jα and γα ∈ C∞(M) are smooth
functions (for 0! α! 3), gµν is a metric onM with signature (+,−,−,−) and µ0 is a constant
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[50]. In contrast to [50, 72], in the multicontact framework we can assume that gµν , Jα and
γα are generic functions on the spacetime coordinates.

The Lagrangian energy is

EL = Aµ,α
∂L

∂Aµ,α
− L=

1
µ0
gµνgαβAµ,αFνβ +

1
4µ0

gµνgαβFβνFαµ +AαJα + γαsα ,

and the Lagrangian form is

ΘL = EL ∧ d4x+ dsµ ∧ d3xµ +
1
µ0
gαβgµνFβνdAα ∧ d3xµ .

Then, (P,ΘL,ω) is a premulticontact Lagrangian system. Indeed,

C =

〈
∂

∂Aµ,ν
+

∂

∂Aν,µ

〉

µ,ν=0,1,2,3
, DR =

〈
∂

∂Aµ,ν
+

∂

∂Aν,µ
,
∂

∂sµ

〉

µ,ν=0,1,2,3
,

and i

(
∂

∂sµ

)
ΘL = d3xµ. The dissipation form is σΘL = γµdxµ, which is closed as long as

∂γµ
∂xν

=
∂γν
∂xµ

. As it is studied in [50], for some special values of γµ it can be shown that the

energy of the system is dissipated. In general, we can only say that it is not conserved. The
Lagrangian and the premulticontact structure are invariant under a change of gauge. Never-
theless, the study of the symmetries of multicontact systems goes beyond the scope of this
work.

For a multivector field with local expression

XL =
m∧

ρ=1

( ∂

∂xρ
+Xµ,ρ

∂

∂Aµ
+Xµν,ρ

∂

∂Aµ,ν
+Xν

ρ
∂

∂sν

)
,

the field equation (15) lead to





Xµ
µ = L ,
Xν,µ −Xµ,ν = Aν,µ −Aµ,ν ,

µ0Jµ = gνσgµτ (Xτσ,ν −Xστ,ν + γνXτ,σ − γνXσ,τ ) .

(50)

We recover only a part of the holonomy, as it is expected in premulticontact Lagrangian sys-
tems. Imposing that XL is holonomic and denoting Xµν,ρ −Xνµ,ρ = Fνµ,ρ, the last equation
of (50) is

µ0Jµ = gνσgµτ (Fστ,ρ + γνFστ ) .

In order to recover an expression involving the electric and magnetic fields, we consider the

case gµν =
1√

1+χm
diag

(
(1+χe)(1+χm),−1,−1,−1

)
, where χe and χm are the electric

and magnetic susceptibilities respectively. Then, letting γµ =
(γ
c
,γγγ
)
and Jµ = (cρ, j), the last

equation of (50) reads in vector notation as
ρ

ε0
= (1+χe)

(
∇ ·E+γγγ ·E

)
,

j = (1+χe)ε0

(
∂E
∂t

+ γE
)
+

1
1+χm

(
∇× B

µ0
+γγγ× B

µ0

)
,

which are the contact Maxwell’s equations. These equations are the so-called ‘second pair of
Maxwell’s equations’ and correspond to the Gauss law (for electric fields) and the Ampère–
Maxwell law for linear materials (or also for vacuum) when γν = 0. The “first pair of Maxwell
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equations”; i.e. the Gauss law (for magnetic fields) and the Faraday–Henry–Lenz law are the
same as in the vacuum case, since these laws are just stating that the curvature of the connec-
tion, whose coefficients are the electromagnetic tensor field F, is closed.

8. Conclusions and outlook

In this paper we have introduced and studied (pre)multicontact structures as a generalization
of (pre)cocontact and (pre)multisymplectic structures.

We have stated the properties defining (pre)multicontact manifolds in general. The bundle
structure of these kinds of manifolds has been analyzed, also proving a Darboux-type theorem
to find charts of adapted coordinates. This is useful, in first place, to study these manifolds
from an abstract point of view and, at the same time, they are the setting for describing non-
conservative first-order classical field theories. To do the latter, we need to restrict the type
of (pre)multicontact structures involved. This is achieved by introducing an additional con-
dition that ensures that the pdes associated with the structure (which are the field equations
in the non-conservative field theories) are of variational type. We have characterized the field
equations using different geometrical tools (sections, multivector fields and Ehresmann con-
nections) that are useful in different contexts. Then, the Lagrangian and the Hamiltonian form-
alisms of non-conservative field theories have been developed for the regular and the almost-
regular situations. Finally, the extension of the Herglotz variational Principle has been studied
in the Lagrangian, Hamiltonian and general cases, in order to derive the (pre)multicontact field
equations variationally.

As illustrative examples, from this framework we have recovered the cocontact formulation
describing non-conservative time-dependent mechanics, we have analyzed the 1-dimensional
wave equation with time-dependent damping, and Maxwell’s electromagnetism with damping
terms.

The present work opens many new lines of research. Some of the possible topics are:

• To do an accurate analysis of the case of singular systems and the corresponding Lagrangian
andHamiltonian constraint algorithms, characterizing geometrically the constraint submani-
folds and studying the equivalence between the solutions to the Lagrangian and the Hamilto-
nian field equations.

• To develop a Hamilton–Jacobi equation for non-conservative field theories similar to that
for contact Hamiltonian systems [26, 27] and multisymplectic field theories [33].

• To study the reduction of multicontact systems in the presence of a group of symmetries,
introducing a good definition of momentum map. For multisymplectic reduction see, for
instance, [7, 40] and references therein.

• To study the different types of submanifolds of a multicontact manifold and to find an ana-
logue to the coisotropic reduction.

• To study the formalism in Cauchy data space in the multicontact setting.
• To establish a bracket similar to that of multisymplectic theories, which in this case will not
satisfy Leibniz’s rule-like properties, as in the case of contact Hamiltonian systems. Related
to this, it would be interesting to study the relationship between (pre)multicontact structures
and Jacobi bundles.

• To provide a geometric framework for new gravitational theories to describe astrophysical
observations [51, 82].

• It is expected that the multicontact framework can be used to formulate continuum mechan-
ics equations [76].
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