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In this paper, we study the integrability of contact Hamiltonian systems, both time-
dependent and independent. In order to do so, we construct a Hamilton–Jacobi theory 
for these systems following two approaches, obtaining two different Hamilton–Jacobi equa-
tions. Compared to conservative Hamiltonian systems, contact Hamiltonian systems depend 
of one additional parameter. The fact of obtaining two equations reflects whether we are 
looking for solutions depending on this additional parameter or not. In order to illustrate 
the theory developed in this paper, we study three examples: the free particle with a lin-
ear external force, the freely falling particle with linear dissipation and the damped and 
forced harmonic oscillator.
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1. Introduction

Recently there has been a renewed interest in using contact geometry [46,60] to describe mechanical systems. These 
systems, unlike symplectic Hamiltonian systems, lead to dissipated rather than conserved quantities [28,30,43,45]. These 
systems are also relevant to describe mechanical systems with certain types of damping [6,8,28,62], quantum mechanics 
[9,15], Lie systems [38], circuit theory [49], thermodynamics [2,7], control theory [27,73,79] and black holes [47], among 
many others [5,51]. The underlying variational principle is the so-called Herglotz principle [29,57,70], a generalization of the 
well-known Hamilton principle, which gives rise to action-dependent Lagrangian systems. These Lagrangians are becoming 
popular in theoretical physics [63–65]. Recently, contact mechanics have been generalized to deal with classical field theories 
with damping [22,42,44,52,76]

Hamilton–Jacobi theory provides a remarkably powerful method to integrate the dynamics of many Hamiltonian systems. 
In particular, for a completely integrable system, if one knows a complete solution of the Hamilton–Jacobi problem, the 
dynamics of the system can be reduced to quadratures [3,48,53–55]. Geometrically, the Hamilton–Jacobi problem consists 
on finding a section γ of πQ : T∗ Q → Q which transforms integral curves of a projected vector field Xγ

H on Q into integral 
curves of the dynamical vector field XH on T∗ Q [1,12]. This idea can be naturally extended to other vector bundles. As a 
matter of fact, it has been applied in many other different contexts, such as nonholonomic systems [13,31,58,74], singular 
Lagrangian systems [32,33,66], higher-order systems [18], field theories [10,36,37,80,81] or systems with external forces 
[24,25]. A unifying Hamilton–Jacobi theory for almost-Poisson manifolds was developed in [34]. Hamilton–Jacobi theory has 
also been extended to Hamiltonian systems with non-canonical symplectic structures [72], non-Hamiltonian systems [75], 
locally conformally symplectic manifolds [40], Nambu–Poisson [19] and Nambu–Jacobi [20] manifolds, Lie algebroids [67]
and implicit differential systems [39,41]. The applications of Hamilton–Jacobi theory include the relation between classical 
and quantum mechanics [9,14,71], information geometry [16,17], control theory [78] and the study of phase transitions [61]. 
Hamilton–Jacobi theory for autonomous contact Hamiltonian systems has been studied in [26,35,50].

We have recently initiated the study of time-dependent contact Hamiltonian systems [21,45,77], and the underlying 
geometric structures, which we call cocontact manifolds since they are a combination of cosymplectic (the setting for 
studying time-dependent Hamiltonian systems) and contact structures. Such structures consist of two one-forms, τ and η, 
where τ is closed and τ ∧ η ∧ (dη)n is a volume form, in a (2n + 2)-dimensional manifold. The local model for cocontact 
manifolds is the product bundle R × T∗ Q ×R with a cocontact structure induced by the canonical symplectic structure of 
the cotangent bundle. In fact, in [21] we have been able to identify that a cocontact structure gives rise to a Jacobi structure 
whose characteristic foliation is formed by contact leaves.

The aim of the present paper is to develop a Hamilton–Jacobi theory for time-dependent contact Hamiltonian systems. 
This will also allow us to construct time-dependent solutions of the Hamilton–Jacobi problem for autonomous contact 
systems, which, unlike time-independent solutions, cover nonzero energy levels. We follow the line undertaken in previous 
papers [26,35], considering sections of the canonical fibrations R × T∗ Q ×R → R × Q and R × T∗ Q ×R → R × Q ×R, 
which allows us to project the Hamiltonian vector field to the base and, by comparing the values on the section, we obtain 
the corresponding Hamilton–Jacobi equations. This study is particularly useful since it allows us to study the symmetries, 
conserved quantities and integrability of the system.

In the first of the approaches, where sections of R × T∗ Q ×R →R × Q are considered, complete solutions depend on 
n + 1 parameters (instead of the usual n = dim Q parameters in the classical Hamilton–Jacobi theory). We also make use of 
this approach to construct complete solutions, depending on n parameters, for autonomous contact Hamiltonian systems. In 
the second approach we consider sections of R × T∗ Q ×R →R × Q ×R, and complete solutions depend of n parameters 
(roughly speaking, the additional parameter is absorbed by the extra R-component of the base). Furthermore, this second 
approach motivates a new definition of integrable contact Hamiltonian system.

The paper is structured as follows. Section 2 is devoted to review time-dependent contact Hamiltonian systems intro-
ducing the basic elements needed. In Section 3 we study symmetries and dissipated quantities in cocontact Hamiltonian 
systems. In Section 4 we develop the action-independent approach to the Hamilton–Jacobi problem, study complete solu-
tions and apply our results for integrating time-independent contact Hamiltonian systems. We also present an example: a 
free particle with linear friction. In Section 5 we deal with the action-dependent approach to the Hamilton–Jacobi prob-
lem, study complete solutions and introduce a new definition of integrable contact system. We also discuss two examples 
2
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as applications of this approach: the freely falling particle with linear dissipation and the damped and forced harmonic 
oscillator.

From now on, all the manifolds and mappings are assumed to be smooth, connected and second-countable. Sum over 
crossed repeated indices is understood.

2. Review on time-dependent contact systems

In this section we are going to review some fundamentals on cocontact geometry and time-dependent contact Hamilto-
nian systems (for more details see [21]).

2.1. Cocontact manifolds

Definition 2.1. A cocontact structure on a (2n + 2)-dimensional manifold M is a couple (τ , η), where τ , η ∈ �1(M) and 
dτ = 0, such that τ ∧ η ∧ (dη)n is a volume form on M . In this case, (M, τ , η) is called a cocontact manifold.

Given a cocontact manifold (M, τ , η), the distribution H = kerη is called the horizontal or contact distribution. Notice 
that this distribution has corank one and is maximally non-integrable.

Example 2.2. Let (P , η0) be a contact manifold1 and consider the product manifold M =R × P . Denoting by dt the pullback 
to M of the volume form in R and by η the pullback of η0 to M , we have that (dt, η) is a cocontact structure on M .

Example 2.3. Let (P , τ , −dθ) be an exact cosymplectic manifold [11] and consider the product manifold M = P ×R. Denot-
ing by z the coordinate in R we define the one-form η = dz − θ . Then, (τ , η) is a cocontact structure on M = P ×R.

Example 2.4 (Canonical cocontact manifold). Let Q be an n-dimensional smooth manifold with local coordinates (qi) and 
consider its cotangent bundle T∗ Q with induced natural coordinates (qi, pi). Consider the product manifolds R × T∗ Q with 
coordinates (t, qi, pi), T∗ Q ×R with coordinates (qi, pi, z) and R ×T∗ Q ×R with coordinates (t, qi, pi, z) and the canonical 
projections

R× T∗ Q ×R

R× T∗ Q T∗ Q ×R

T∗ Q

ρ1 ρ2

π

π2 π1

Let θ0 ∈ �1(T∗ Q ) be the Liouville one-form of the cotangent bundle, which has local expression θ0 = pidqi . Then, (dt, θ2), 
where θ2 = π∗

2 θ0, is a cosymplectic structure in R × T∗ Q . On the other hand, if θ1 = π∗
1 θ0, we have that η1 = dz − θ1 is a 

contact form in T∗ Q ×R.
Finally, consider the 1-form θ = ρ∗

1θ2 = ρ∗
2θ1 = π∗θ0 ∈ �1(R × T∗ Q ×R) and let η = dz − θ . Then, (dt, η) is a cocontact 

structure in R × T∗ Q ×R. The local expression of the one-form η is

η = dz − pidqi .

Given a cocontact manifold (M, τ , η), we have the flat isomorphism.

	 : v ∈ TM �−→ (ιvτ )τ + ιv dη + (ιvη)η ∈ T∗M .

This isomorphism can be trivially extended to an isomorphism of C ∞(M)-modules 	 : X(M) → �1(M). The inverse of the 
flat isomorphism is denoted by � = 	−1 : �1(M) →X(M) and called the sharp isomorphism.

Moreover, we have the following results, whose proofs can be found in [21].

1 A contact structure on an odd-dimensional manifold M is a one-codimensional maximally non-integrable distribution C on M . In this case, (M, C)

is a contact manifold. A contact form on M is a one-form η ∈ �1(M) such that kerη becomes a contact structure on M . In this case, (M, η) is called 
a co-oriented contact manifold [46]. However, since we are only interested in local aspects of contact manifolds, we will consider that all our contact 
manifolds are co-oriented.
3
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Proposition 2.5. On every cocontact manifold (M, τ , η) there exist two distinguished vector fields Rt , Rz on M such that

ιRt τ = 1 , ιRt η = 0 , ιRt dη = 0 ,

ιRzτ = 0 , ιRzη = 1 , ιRz dη = 0 ,

or, equivalently, Rt = 	−1(τ ) and Rz = 	−1(η). These vector fields Rt and Rz are called time and contact Reeb vector fields respec-
tively.

Theorem 2.6 (Cocontact Darboux theorem). Given a cocontact manifold (M, τ , η), around every point x ∈ M there exist local coordi-
nates (t, qi, pi, z) such that

τ = dt , η = dz − pidqi .

These coordinates are called canonical or Darboux coordinates. In addition, in Darboux coordinates, the Reeb vector fields read

Rt = ∂

∂t
, Rz = ∂

∂z
.

Proposition 2.7. Let (M, τ , η) be a cocontact manifold. Then, (M, 
, E) is a Jacobi manifold, where


(α,β) = −dη(�α, �β) , E = −Rz .

The bivector 
 induces a C ∞(M)-module morphism 
̂ : �1(M) → X(M) given by


̂(α) = 
(α, ·) = �α − α(Rz)Rz − α(Rt)Rt . (1)

It can be seen that ker 
̂ = 〈τ , η〉. The morphism 
̂ is also denoted by �
 in the literature [23,28].
Taking Darboux coordinates (t, qi, pi, z), the bivector 
 has local expression


 = ∂

∂qi
∧ ∂

∂ pi
− pi

∂

∂ pi
∧ ∂

∂z
,

and the Jacobi bracket reads

{ f , g} = ∂ f

∂qi

∂ g

∂ pi
− ∂ g

∂qi

∂ f

∂ pi
−
(

∂ f

∂ pi

∂ g

∂z
− ∂ g

∂ pi

∂ f

∂z

)
− f

∂ g

∂z
+ g

∂ f

∂z
.

In particular, one has

{qi,q j} = {pi, p j} = 0 , {qi, p j} = δi
j , {qi, z} = −qi , {pi, z} = −2pi .

2.2. Cocontact Hamiltonian systems

Definition 2.8. A cocontact Hamiltonian system is family (M, τ , η, H) where (τ , η) is a cocontact structure on M and 
H : M →R is a Hamiltonian function. The cocontact Hamilton equations for a curve ψ : I ⊂R → M are⎧⎪⎪⎨⎪⎪⎩

ιψ ′dη =
(

dH − (LRs H)η − (LRt H)τ
)

◦ ψ ,

ιψ ′η = −H ◦ ψ ,

ιψ ′τ = 1 ,

(2)

where ψ ′ : I ⊂ R → TM is the canonical lift of ψ to the tangent bundle TM . The cocontact Hamiltonian equations for a 
vector field XH ∈ X(M) are:⎧⎪⎨⎪⎩

ιXH dη = dH − (LRs H)η − (LRt H)τ ,

ιXH η = −H ,

ιXH τ = 1 ,

or equivalently, 	(XH ) = dH − (
LRs H + H

)
η+ (

1 − LRt H
)
τ . The unique solution to these equations is called the cocontact 

Hamiltonian vector field.
4
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Given a curve ψ with local expression ψ(r) = ( f (r), qi(r), pi(r), z(r)), the third equation in (2) imposes that f (r) = r + c, 
where c is some constant, thus we will denote r ≡ t , while the other equations read:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

q̇i = ∂ H

∂ pi
,

ṗi = −
(

∂ H

∂qi
+ pi

∂ H

∂z

)
,

ż = pi
∂ H

∂ pi
− H .

(3)

On the other hand, the local expression of the cocontact Hamiltonian vector field is

XH = ∂

∂t
+ ∂ H

∂ pi

∂

∂qi
−
(

∂ H

∂qi
+ pi

∂ H

∂z

)
∂

∂ pi
+
(

pi
∂ H

∂ pi
− H

)
∂

∂z
.

The integral curves of the cocontact Hamiltonian vector field satisfy the following variational principle [69], which is a 
Hamiltonian version of the Herglotz principle [57].

Theorem 2.9 (Hamiltonian formulation of the Herglotz principle). Given a Hamiltonian H : R × T∗ Q × R → R, a curve c =
(IdR, q, p, z) : [0, T ] → T∗ Q × R is an integral curve of the Hamiltonian vector field XH if and only if it is a critical point of the 
action map

A(c) =
T∫

0

(
p(t)q̇(t) − H(t,q(t), p(t), z(t))

)
dt (4)

among all curves satisfying c(0) = c0 , c(T ) = cT and ż = p(t)q̇(t) − H(t, q(t), p(t), z(t)).

3. Symmetries and dissipated quantities in cocontact systems

There are several notions of symmetries in contact mechanics depending on the structures they preserve [30,43]. How-
ever, in the present paper we will restrict ourselves to what we call generalized dynamical symmetries (see [45] for other 
notions of symmetry). In some cases we will restrict ourselves to the case of cocontact manifolds of the form M = R × N
where N is a contact manifold (see Example 2.2). In this case, the natural projection R × N →R defines a global canonical 
coordinate t .

Definition 3.1. Let (M, τ , η, H) be a cocontact Hamiltonian system and let XH be its cocontact Hamiltonian vector field.

• If M = R × N with N a contact manifold, a generalized dynamical symmetry is a diffeomorphism � : M → M such 
that η(�∗ XH ) = η(XH ) and �∗t = t .

• An infinitesimal generalized dynamical symmetry is a vector field Y ∈ X(M) such that η([Y , XH ]) = 0 and ιY τ = 0. In 
particular, if M =R × N with N a contact manifold, the flow of Y is made of generalized dynamical symmetries.

Definition 3.2. Let (M, τ , η, H) be a cocontact Hamiltonian system. A dissipated quantity is a function f ∈ C ∞(M) such 
that

XH f = −(Rz H) f .

It is worth pointing out that, unlike in the contact case, the Hamiltonian function is not, in general, a dissipated quantity. 
Indeed, using that

XH H = −(Rz H)H + Rt H ,

it is clear that H is a dissipated quantity if and only if it is time-independent, i.e. Rt H = 0. This resembles the cosymplectic 
case, where the Hamiltonian function is conserved if, and only if, it is time-independent (see [11]).

Proposition 3.3. A function f ∈ C ∞(M) is a dissipated quantity if and only if { f , H} = Rt( f ), where {·, ·} is the Jacobi bracket 
associated to the cocontact structure (τ , η).

Proof. The Jacobi bracket of f and H is given by

{ f , H} = 
(d f ,dH) + f E(H) − H E( f ) = −dη (�d f , �dH) − f Rz(H) + H Rz( f ) ,
5
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but

�d f = X f + (Rz( f ) + f ) Rz − (1 − Rt( f )) Rt ,

so

ι�d f dη = ιX f dη = d f − Rz( f )η − Rt( f )τ ,

and thus

dη(�d f , �dH) = XH ( f ) + Rz( f )H − Rt( f ) .

Hence,

{H, f } + Rt( f ) = XH ( f ) + Rz(H) f .

In particular, the right-hand side vanishes if and only if f is a dissipated quantity. �
Theorem 3.4 (Noether’s theorem). Let Y be an infinitesimal generalized dynamical symmetry of the cocontact Hamiltonian system 
(M, τ , η, H). Then, f = −ιY η is a dissipated quantity of the system. Conversely, given a dissipated quantity f ∈ C ∞(M), the vector 
field Y = X f − Rt , where X f is the Hamiltonian vector field associated to f , is an infinitesimal generalized dynamical symmetry and 
f = −ιY η.

Proof. Let f = −ιY η, where Y is an infinitesimal generalized dynamical symmetry. Then,

LXH f = −LXH ιY η = −ιY LXH η − ι[XH ,Y ]η =
ιY (Rz(H)η + Rt(H)τ ) = Rz(H)ιY η = −Rz(H) f ,

and thus f is a dissipated quantity.
On the other hand, given a dissipated quantity f , let Y = X f − Rt . Then, it is clear that f = −ιY η. In addition, ιY τ = 0, 

and

ι[XH ,Y ]η = LXH ιY η − ιY LXH η = −LXH f + ιY (Rz(H)η + Rt(H)τ )

= Rz(H) f − Rz(H)ιY η = 0 . �
The symmetries presented yield dissipated quantities. However, we are also interested in finding conserved quantities. 

The latter are important due to their elation with complete solutions of the Hamilton–Jacobi problem (see Section 5).

Definition 3.5. A conserved quantity of a cocontact Hamiltonian system (M, τ , η, H) is a function g ∈ C ∞(M) such that

XH g = 0 .

Taking into account that every dissipated quantity changes with the same rate Rz(H), we have the following result, 
whose proof is straightforward.

Proposition 3.6. Consider a cocontact Hamiltonian system (M, τ , η, H).

• If f1, f2 are two dissipated quantities and f2 �= 0, then f1/ f2 is a conserved quantity.
• If f is a dissipated quantity and g is a conserved quantity, then f g is a dissipated quantity.

4. The action-independent approach

4.1. Hamilton–Jacobi theory. The action-independent approach

Let (R × T∗ Q ×R, τ , η, H) be a cocontact Hamiltonian system, where τ = dt , η = dz − θ0 and θ0 = pidqi is the Liouville 
one-form of the cotangent bundle. Consider a section γ of the bundle π t

Q :R × T∗ Q ×R →R × Q , locally given by

γ : R× Q −→ R× T∗ Q ×R(
t,qi

)
�−→

(
t,qi, γi(t,q), S(t,q)

)
.

Let us introduce the vector field Xγ on R × Q given by
H

6
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Xγ
H = Tπ t

Q ◦ XH ◦ γ ,

where XH is the Hamiltonian vector field of (R × T∗ Q ×R, τ , η, H). Suppose that Xγ
H and XH are γ -related, i.e.,

XH ◦ γ = Tγ ◦ Xγ
H , (5)

so that the following diagram commutes:

R× T∗ Q ×R T(R× T∗ Q ×R)

R× Q T(R× Q )

π t
Q

XH

Tπ t
Q

X
γ
H

γ Tγ

Locally,

XH ◦ γ = ∂

∂t
+ ∂ H

∂ pi

∂

∂qi
−
(

∂ H

∂qi
+ γi

∂ H

∂z

)
∂

∂ pi
+
(
γi

∂ H

∂ pi
− H

)
∂

∂z
,

and

Tγ ◦ Xγ
H = ∂

∂t
+ ∂ H

∂ pi

∂

∂qi
+
(

∂γi

∂t
+ ∂ H

∂ p j

∂γ j

∂qi

)
∂

∂ pi
+
(

∂ S

∂t
+ ∂ S

∂qi

∂ H

∂ pi

)
∂

∂z
,

so equation (5) holds if and only if

−
(

∂ H

∂qi
+ γi

∂ H

∂z

)
= ∂γi

∂t
+ ∂ H

∂ p j

∂γ j

∂qi
,

γi
∂ H

∂ pi
− H = ∂ S

∂t
+ ∂ S

∂qi

∂ H

∂ pi
.

(6)

Definition 4.1. Given a section α :R × Q →R ×∧k T∗ Q and t ∈R, let

α(t) : Q −→
∧k

T∗ Q

x �−→ pr
kT∗ Q (α(t, x)) ,

where pr∧k T∗ Q :R ×∧k T∗ Q →∧k T∗ Q is the canonical projection. The exterior derivative of α at fixed t is the section of 

R ×∧k+1 T∗ Q →R × Q given by

dQ α(t, x) = (t,dα(t)(x)) .

In coordinates, for f ∈ C ∞(R × Q ) and α(t, x) = (t, αidxqi) a section of the bundle R × Q → R ×∧k T∗ Q , the local 
expressions are

dQ f =
(

t,
∂ f

∂qi
dxqi

)
,

dQ α =
(

t,
∂α j

∂qi
dxqi ∧ dxq j

)
.

Since we shall be considering fixed t , we will often make the abuse of notation

dQ f = ∂ f

∂qi
dxqi .

Definition 4.2. Given f ∈ C ∞(R × Q ), the 1-jet of f at fixed t is the section j1
t f : R × Q →R × T∗ Q ×R given by

j1
t f (t, x) = (dQ f , f ) .

Let us recall that a Legendrian submanifold N ↪→ M of a (2n + 1)-dimensional contact manifold (M, η) is an n-
dimensional submanifold such that η|N = 0 (see [23]).
7
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Proposition 4.3. Let γ be a section of π t
Q :R × T∗ Q ×R →R × Q . Then, for every t ∈R, Imγ (t, ·) is a Legendrian submanifold of 

(T∗ Q ×R, η) if and only if it is the image of the 1-jet at fixed t of a function, namely,

γ (t, x) = j1
t f (t, x) = (dQ f , f ) .

Proof. Let t ∈R and let γ :R × Q →R × T∗ Q ×R such that γ (t, q) = (t, α(t, q), f (t, q)). Clearly, γ ∗τ = 0, hence Imγ is 
Legendrian if and only if γ ∗η = 0. Thus,

γ ∗η = f ∗dz − α∗θQ = dQ f − α ,

so γ ∗η vanishes precisely when α = dQ f . �
Now, suppose that Imγ is a Legendrian submanifold. By Proposition 4.3, we have that

γi = ∂ S

∂qi
,

so equations (6) can be written as

−
(

∂ H

∂qi
+ ∂ S

∂qi

∂ H

∂z

)
= ∂2 S

∂t∂qi
+ ∂ H

∂ p j

∂ S

∂qi∂q j
, (7a)

∂ S

∂qi

∂ H

∂ pi
− H = ∂ S

∂t
+ ∂ S

∂qi

∂ H

∂ pi
, (7b)

equation (7a) implies that

dQ (H ◦ j1
t S) + dQ (Rt S) = 0 , (8)

while equation (7b) yields

H = −∂ S

∂t
,

that is,

H ◦ j1
t S + ∂ S

∂t
= 0 . (9)

Clearly, equation (8) is implied by equation (9). We have thus proven the following.

Theorem 4.4 (Action-independent Hamilton–Jacobi theorem). Let γ be a section of π t
Q :R × T∗ Q ×R →R × Q such that, for every 

t ∈R, Imγ (t, ·) is a Legendrian submanifold of (T∗ Q ×R, η). Then, Xγ
H and XH are γ -related if and only if equation (9) holds. This 

equation will be called the action-independent Hamilton–Jacobi equation for (R × T∗ Q × R, τ , η, H). The function S such that 
γ = j1

t S is called a generating function for H.

In order to study the integrability of cocontact Hamiltonian systems, it is of interest to introduce the following.

Definition 4.5. Let (R × T∗ Q × R, τ , η, H) be a cocontact Hamiltonian system. A complete solution of the action-
independent Hamilton–Jacobi problem for (R × T∗ Q × R, τ , η, H) is a local diffeomorphism � : R × Q × Rn+1 →
R × T∗ Q ×R such that, for each λ ∈Rn+1,

�λ : R× Q → R× T∗ Q ×R(
t,qi

)
�→ �

(
t,qi, λ

)
is a solution of the action-independent Hamilton–Jacobi problem for (R × T∗ Q ×R, τ , η, H).

It is worth noting that complete solutions depend on n + 1 real parameters, one extra parameter in comparison with the 
(co)symplectic case. In order to consider complete solutions depending on just n parameters, we shall introduce a different 
approach to the Hamilton–Jacobi problem for (co)contact Hamiltonian systems (see Section 5).

Let α : R × Q ×Rn+1 →Rn+1, and πi : Rn+1 →R denote the canonical projections. One can define the n + 1 functions 
f i = πi ◦ α ◦ �−1 on R × T∗ Q ×R, so that the following diagram commutes:
8
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R× Q ×Rn+1 R× T∗ Q ×R

Rn+1 R

�

α
�−1

f i

πi

Theorem 4.6. Let � : R × Q ×Rn+1 →R × T∗ Q ×R be a complete solution of the action-independent Hamilton–Jacobi problem 
for (R × T∗ Q ×R, τ , η, H). Then,

(i) For each i ∈ {1, . . . , n +1}, the function f i = πi ◦α ◦�−1 is a constant of the motion. However, these functions are not necessarily 
in involution, i.e., { f i, f j} �= 0.

(ii) For each i ∈ {1, . . . , n + 1}, the function f̂ i = g fi , where g is a dissipated quantity, is also a dissipated quantity. Moreover, if 
Rt(H) = 0 and taking g = H, these functions are in involution, i.e., { f̂ i, f̂ j} = 0.

Proof. We can write

Im �λ = {x ∈R× T∗ Q ×R | f i(x) = λi, i = 1, . . . ,n} =
n⋂

i=1

f −1
i (λi) ,

where λ = (λ, . . . , λn) ∈Rn . Since XH is tangent to any of the submanifolds Im �λ , we deduce that

XH fi = 0 ,

so each of the functions f i , for i = 1, . . . , n, is a constant of the motion.
On the other hand, we can compute

{ f i, f j} = X f j ( f i) − Rt( f i) − f i Rz( f j) ,

which does not vanish in general. By Proposition 3.6, the product of a conserved quantity and a dissipated quantity is a 
dissipated quantity. Let f i and f j be conserved quantities and take g = H . Then,

{ f̂ i, f̂ j} = {H fi, H f j} = f j{H fi, H} + H{H fi, f j} − f j H Rz(H fi)

= − f j H{H, f i} + f i f j H Rz(H) − f i H{ f j, H} − H2{ f j, f i} + f i H2 Rz( f j) − f j H Rz(H fi)

= 0 .

� (10)

Remark 4.7. Making use of a symplectization, one can study a time-independent contact Hamiltonian system as an exact 
symplectic Hamiltonian system with one additional dimension. Dissipated quantities in involution with respect to the Ja-
cobi bracket of the contact system lead to conserved quantities in involution with respect to the Poisson bracket of the 
associated symplectic system. On the other hand, the celebrated Liouville–Arnold Theorem [3] permits to construct action-
angle coordinates of a 2n-dimensional symplectic Hamiltonian system with n conserved quantities in involution, leading 
to integrability by quadratures. Therefore, dissipated quantities in involution could lead to integrability by quadratures of 
contact Hamiltonian systems. However, this relation is highly non-trivial and it is subject of further research. An alternative 
approach to Hamilton–Jacobi theory and integrability by quadratures for contact Hamiltonian systems can be found in [56].

Complete solutions of the Hamilton–Jacobi problem may be used to integrate the dynamics of the system as follows:

(i) Solve the Hamilton–Jacobi equation

H ◦ j1
t Sλ + ∂ Sλ

∂t
= 0

for arbitrary values of λ ∈Rn+1. Let �λ = j1
t Sλ .

(ii) Compute the integral curves σ : R →R × Q , σ(t) = (t, qi(t)) of Xγ
H , which are given by

dqi

dt
= ∂ H

∂ pi

∣∣∣∣
Im�λ

, (11)

where the restriction to Im�λ means that one has to write pi = ∂ Sλ/∂qi and z = Sλ .
(iii) The integral curves σ̃ of XH on Im�λ are given by �λ ◦ σ , namely,

σ̃ (t) = �λ ◦ σ(t) =
(
σ(t),

∂ Sλ

i
(σ (t)), Sλ(σ (t))

)
.

∂q

9
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It is worth noting that computing the integral curves of Xγ
H is not always straightforward. However, there are some 

relevant cases in which it is particularly easy.

Example 4.8. Suppose that Q =Rn with the Euclidean norm. If the generating function is separable, i.e., S(t, q1, q2, . . . , qn)

= S0(t) + S1(q1) + · · · + Sn(qn), and the Hamiltonian is mechanical, namely, H = ‖p‖2

2m(t)
+ V (t, q, z), then equations (11)

simplify to

dqi

dt
= 1

m(t)
S ′

i(q
i) .

4.2. Example: the free particle with time-dependent mass and a linear external force

Consider the cocontact Hamiltonian system (R × T∗ Q ×R, dt, η, H), where

H = p2

2m(t)
− κ

m(t)
z,

with m a function depending only on t , expressing the mass of the particle, and κ a positive constant. Then, the action-
independent Hamilton–Jacobi equation for H is given by

1

2m(t)

(
∂ S

∂q

)2

− κ

m(t)
S(t,q) + ∂ S

∂t
= 0 ,

that is,(
∂ S

∂q

)2

− 2κ S(t,q) + 2m(t)
∂ S

∂t
= 0 . (12)

Suppose that the generating function S is separable, namely, S(t, q) = α(t) + β(q). Then, equation (12) can be written as(
dβ

dq

)2

− 2κα(t) − 2κβ(q) + 2m(t)
dα

dt
= 0 ,

so

2m(t)
dα

dt
− 2γ α(t) = 0 ,(

dβ

dq

)2

− 2κβ(q) = 0.

Then,

αλ1(t) = λ1eκ
∫ t

0
1

m(s) ds
βλ2(q) =

(√
κ

2
q + λ2

)2

,

that is,

Sλ(t,q) = λ1eκ
∫ t

0
1

m(s) ds +
(√

κ

2
q + λ2

)2

,

and

�(t,q, λ) = j1
t Sλ(t,q) =

⎛⎝t,q,
√

2κ

(√
κ

2
q + λ2

)
, λ1eκ

∫ t
0

1
m(s) ds +

(√
κ

2
q + λ2

)2
⎞⎠

is a complete solution. Its inverse is given by

�−1 : (t,q, p, z) �→
(

t,q, e−κ
∫ t

0
1

m(s) ds
(

z − p2

2κ

)
,

p − κq√
2κ

)
.

Hence,

f1(t,q, p, z) = e−κ
∫ t

0
1

m(s) ds
(

z − p2 )
,

2κ

10
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and

f2(t,q, p, z) = p − κq√
2κ

are conserved quantities.
The Hamiltonian vector field of H is given by

XH = ∂

∂t
+ p

m(t)

∂

∂q
+ κ p

m(t)

∂

∂ p
+
(

p2

2m(t)
+ κ

m(t)
z

)
∂

∂z
.

One can check that XH ( f1) = XH ( f2) = 0. Moreover,

Xγ
H = ∂

∂t
+ p

m(t)

∂

∂q

∣∣∣∣
Im �λ

= ∂

∂t
+

√
2κ

(√
κ
2 q + λ2

)
m(t)

∂

∂q
,

whose integral curves σ(t) = (t, q(t)) are given by

q(t) = e
∫ t

1
κ

m(s) ds

⎛⎝ t∫
1

√
2κe− ∫ u

1
κ

m(s) ds
λ

m(u)
du + c

⎞⎠ ,

where c is a constant. Then, the integral curves of XH along Im�λ are given by �λ ◦ σ(t) = (t, q(t), p(t), z(t)), where

p(t) = √
2κ

(√
κ

2
q(t) + λ2

)
,

and

z(t) = λ1eκ
∫ t

0
1

m(s) ds +
(√

κ

2
q(t) + λ2

)2

.

4.3. The variational interpretation of the solution to Hamilton–Jacobi equation

Suppose that σ : [0, T ] → Q is a trajectory given by the cocontact Hamilton equations (3) for the Hamiltonian function 
H : R × T∗ Q × R → R. If γ = j1

t S is a solution to the Hamilton–Jacobi problem for H , the generating function S can be 
interpreted as the action of the lifted curve j1

t S ◦ σ up to a constant.

Theorem 4.9. Suppose that S ∈ C ∞(R × Q ) is a generating function for H. Let σ : [0, T ] → Q be a curve with local expression 
σ(t) = (qi(t)) such that c = (Id, σ) : t ∈R �→ (t, σ(t)) ∈R × Q is an integral curve of Xγ

H . Then,

(S ◦ c)(t) = A( j1
t S ◦ σ)(t) + S0 ,

for some S0 ∈R, where A denotes the action map (4).

Proof. Assume that S ∈ C ∞(R × Q ) is a generating function for H . Then,

d

dt
S(t,q(t)) = ∂ S(t,σ (t))

∂t
+ ∂ S(t,σ (t))

∂qi
q̇i(t)

= ∂ S(t,σ (t))

∂qi
q̇i(t) − H ◦ j1

t S ◦ σ(t)

= d

dt
A( j1

t S ◦ σ)(t) ,

where we have used the Hamilton–Jacobi equation (9) on the second step, and the definition of the action map (4) on the 
last step. Hence,

S(t,q(t)) = A( j1
t S ◦ q)(t) + S0 ,

for some constant S0. �

11
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4.4. A new approach for the Hamilton–Jacobi problem in time-independent contact Hamiltonian systems

Let us recall that a contact Hamiltonian system (M, η, H) is a contact manifold (M, η) together with a Hamiltonian 
function H : M →R (see [28,43]). The Hamiltonian vector field of H is locally given by

XH = ∂ H

∂ pi

∂

∂qi
−
(

∂ H

∂qi
+ pi

∂ H

∂z

)
∂

∂ pi
+
(

pi
∂ H

∂ pi
− H

)
∂

∂z
.

The analogous of Theorem 4.4 for autonomous contact Hamiltonian systems was developed in [35] (see also [26]):

Theorem 4.10 (Hamilton–Jacobi theorem for autonomous systems). Let (T∗Q × R, η, H) be a contact Hamiltonian system with 
contact Hamiltonian vector field XH . Consider a section γ of πQ : T∗ Q × R → Q such that Imγ is a Legendrian submanifold of 
(T∗ Q ×R, η). Then, Xγ

H and XH are γ -related if and only if

H ◦ γ = 0 . (13)

The problem with this approach is that it cannot be used to completely integrate the system. Indeed, equation (13)
implies that every integral curve of XH ◦γ is contained in H−1(0). This can be solved by regarding the contact Hamiltonian 
system (T∗ Q ×R, η, H) as the cocontact Hamiltonian system (R × T∗ Q ×R, dt, η, ̂H), where Ĥ = H ◦ρ2 (i.e. Ĥ(t, q, p, z) =
H(q, p, z)), such that Rt(Ĥ) = 0 and making use of Theorem 4.4. Suppose that S is of the form S(t, q) = α(q) + β(t). Then, 
equation (9) yields

H ◦ j1α + ∂β

∂t
= 0 ,

that is,

H

(
qi,

∂α

∂qi
, z

)
+ β̇(t) = 0 .

With a suitable choice of α and β , one can cover energy levels distinct from H = 0.

Definition 4.11. Let (T∗ Q × R, η, H) be a contact Hamiltonian system, and let (R × T∗ Q × R, τ , η, ̂H = H ◦ ρ2) be its 
associated cocontact Hamiltonian system. A complete solution of the action-independent Hamilton–Jacobi problem for 
(T∗ Q ×R, η, H) is a map �̂ : R × Q ×Rn → R × T∗ Q ×R such that � = ρ2 ◦ �̂ is a local diffeomorphism and, for each 
λ ∈Rn ,

�̂λ : R× Q → R× T∗ Q ×R(
t,qi

)
�→ �̂

(
t,qi, λ

)
is a solution of the action-independent Hamilton–Jacobi problem for (R × T∗ Q ×R, τ , η, ̂H).

Let α : R × Q × Rn → Rn , and πi : Rn → R denote the canonical projections. One can define the n functions f i =
πi ◦ α ◦ �−1 on R × T∗ Q ×R, so that the following diagram commutes:

R× Q ×Rn T∗ Q ×R

Rn R

�

α
�−1

f i

πi

Then,

Im �λ =
n⋂

i=1

f −1
i (λi) ,

where �λ(t, q) = �(t, q, λ), and

Im �̂λ =
n⋂

i=1

( f i ◦ ρ2)
−1(λi) ,

so the functions f i ◦ ρ2 are constants of the motion for Ĥ , and thus the functions f i are constants of the motion for H .
12
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Example 4.12 (The free particle with a linear external force). Consider the cocontact Hamiltonian system (R ×T∗ Q ×R, dt, η, H), 
where

H = p2

2
− κz,

with κ a positive constant. Let Ĥ = H ◦ ρ2 be the associated time-dependent Hamiltonian. Then, the action-independent 
Hamilton–Jacobi equation for Ĥ is given by

1

2

(
∂ S

∂q

)2

− κ S(t,q) + ∂ S

∂t
= 0 ,

that is,(
∂ S

∂q

)2

− 2κ S(t,q) + 2
∂ S

∂t
= 0 . (14)

Suppose that the generating function S is separable, namely, S(t, q) = α(t) + β(q). Then, equation (14) can be written as(
dβ

dq

)2

− 2κα(t) − 2κβ(q) + 2
dα

dt
= 0 ,

so

2
dα

dt
− 2κα(t) = 0 ,(

dβ

dq

)2

− 2κβ(q) = 0.

Thus,

α(t) = eκt , βλ(q) =
(√

κ

2
q + λ

)2

,

that is,

Sλ(t,q) = eκt +
(√

κ

2
q + λ

)2

,

and

�̂(t,q, λ) = j1
t Sλ(t,q) =

⎛⎝t,q,
√

2κ

(√
κ

2
q + λ

)
, eκt +

(√
κ

2
q + λ

)2
⎞⎠

is a complete solution. Then,

� : (t,q, λ) �→
⎛⎝q,

√
2κ

(√
κ

2
q + λ

)
, eκt +

(√
κ

2
q + λ

)2
⎞⎠ ,

whose inverse is given by

�−1 : (q, p, z) �→
(

1

κ
log

∣∣∣∣z − p2

2κ

∣∣∣∣ ,q,
p − κq√

2κ

)
.

Hence,

f1(t,q, p, z) = p − κq√
2κ

is a conserved quantity.
The Hamiltonian vector field of H is given by

XH = p
∂ + κ p

∂ +
(

p2

+ κz

)
∂

.

∂q ∂ p 2 ∂z

13
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One can check that XH ( f1) = 0. Moreover,

Xγ
H = p

∂

∂q

∣∣∣∣
Im �λ

= √
2κ

(√
κ

2
q + λ

)
∂

∂q
,

whose integral curves σ(t) = (t, q(t)) are given by

q(t) = ceκt −
√

2

κ
λ ,

where c is a constant. Then, the integral curves of XH along Im�λ are given by �λ ◦ σ(t) = (q(t), p(t), z(t)), where

p(t) = √
2κ

(√
κ

2
q(t) + λ

)
= κ ceκt ,

and

z(t) = eκt +
(√

κ

2
q(t) + λ

)2

= eκt + κ

2
c2e2κt .

5. The action-dependent approach

5.1. Hamilton–Jacobi theory. The action-dependent approach

In Section 4 we have introduced a Hamilton–Jacobi theory for time-dependent contact Hamiltonian systems. In particular, 
this approach was shown to be useful to deal with time-independent contact Hamiltonian systems, where time is used 
as a free parameter. Nevertheless, this approach has a couple of drawbacks. First, complete solutions depend on n + 1
parameters, instead of the n parameters that are required for symplectic Hamiltonian systems [12]. Additionally, time-
independent solutions only cover the zero-energy level.

In order to solve these problems, in this section we propose an alternative approach, considering solutions of the 
Hamilton–Jacobi problem depending on the action variable z. Let us consider a section γ of the bundle π t,z

Q : R × T∗ Q ×
R →R × Q ×R, locally given by

γ : R× Q ×R−→ R× T∗ Q ×R

(t, x, z) �−→ (t, x, γi(t, x, z), z) .

As in the previous approach, assume that Xγ
H and XH are γ -related, so that the following diagram commutes:

R× T∗ Q ×R T(R× T∗ Q ×R)

R× Q ×R T(R× Q ×R)

π t,z
Q

XH

Tπ t,z
Q

X
γ
H

γ Tγ

Locally,

XH ◦ γ = ∂

∂t
+ ∂ H

∂ pi

∂

∂qi
−
(

∂ H

∂qi
+ γi

∂ H

∂z

)
∂

∂ pi
+
(
γi

∂ H

∂ pi
− H

)
∂

∂z
,

and

Tγ ◦ Xγ
H = ∂

∂t
+ ∂ H

∂ pi

∂

∂qi
+
(

∂γi

∂t
+ ∂ H

∂ p j

∂γi

∂q j
+
(
γ j

∂ H

∂ p j
− H

)
∂γi

∂z

)
∂

∂ pi
+
(
γi

∂ H

∂ pi
− H

)
∂

∂z
,

so Xγ
H and XH are γ -related if and only if

−
(

∂ H

∂qi
+ γi

∂ H

∂z

)
= ∂γi

∂t
+ ∂ H

∂ p j

∂γi

∂q j
+ ∂γi

∂z

(
γ j

∂ H

∂ p j
− H

)
. (15)

Note that Imγ is (n + 2)-dimensional, so it no longer makes sense to require it to be Legendrian [21]. We will require it 
to be coisotropic instead.

Let us recall that, given a Jacobi manifold (M, 
, E) and a distribution D ⊆ TM , the orthogonal complement D⊥ of D
is given by [23,68]

D⊥
x = 
̂

(
D◦

x

)
,

14
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where D◦
x = {

αx ∈ T∗
x M | αx(v) = 0, ∀ v ∈Dx

}
denotes the annihilator. In particular, a cocontact manifold (M, τ , η) is a 

Jacobi manifold (see Proposition 2.7) and its morphism 
̂ is given by equation (1). A submanifold N ↪→ M is said to be
coisotropic if TN⊥ ⊆ TN .

Definition 5.1. Given a section α :R × Q ×R →R ×∧k T∗ Q ×R and t, z ∈R, let

α(t,z) : Q −→
∧k

T∗ Q

x �−→ pr
kT∗ Q (α(t, x, z)) ,

where pr∧k T∗ Q :R ×∧k T∗ Q ×R →∧k T∗ Q is the canonical projection. The exterior derivative of α at fixed t and z is the 

section of R ×∧k+1 T∗ Q ×R →R × Q ×R given by

dQ α(t, x, z) = (t,dα(t,z)(x), z) .

The coisotropic condition can be written in local coordinates as follows.

Lemma 5.2. Assume that an (n +2)-dimensional submanifold N of a (2n +2)-dimensional cocontact manifold (M, τ , η) is locally the 
zero set of the constraint functions {φa}a=1,...,n. Then, N is coisotropic if and only if the following equation holds in Darboux coordinates:(

∂φa

∂qi
+ pi

∂φa

∂z

)
∂φb

∂ pi
−
(

∂φb

∂qi
+ pi

∂φb

∂z

)
∂φa

∂ pi
= 0 . (16)

Proof. Assume that (M, τ , η) is a (2n + 2)-dimensional cocontact manifold. Let N ↪→ M be a k-dimensional submanifold 
locally given as the zero set of functions φa : U →R, with a ∈ {1, . . . , 2n + 2 − k}. We have that

TN⊥ = 〈{Za}a=1,...,2n+2−k
〉
,

where

Za = 
̂(dφa) =
(

∂φa

∂qi
+ pi

∂φa

∂z

)
∂

∂ pi
− ∂φa

∂ pi

(
∂

∂qi
+ pi

∂

∂z

)
.

Therefore, N is coisotropic if and only if Za(φb) = 0 for all a, b, which in Darboux coordinates yields equation (16). �
Proposition 5.3. Let γ be a section of R × T∗ Q ×R over R × Q ×R. Then Imγ is a coisotropic submanifold if and only if

∂γi

∂q j
+ γ j

∂γi

∂z
= ∂γ j

∂qi
+ γi

∂γ j

∂z
. (17)

Proof. Equation (17) is obtained by applying the previous result to the submanifold N = Imγ , which is locally defined by 
the constraints φi = pi − γi . �

Now suppose that the γ appearing in equation (15) is such that Imγ is coisotropic. Then, by means of equation (17) we 
obtain

∂ H

∂qi
+ ∂ H

∂ p j

∂γ j

∂qi
+ γi

(
∂ H

∂ p j

∂γ j

∂z
+ ∂ H

∂z

)
+ ∂γi

∂t
= H

∂γi

∂z
,

or, globally,

dQ (H ◦ γ ) + ∂

∂z
(H ◦ γ )γ + LRt γ = (H ◦ γ )L ∂

∂z
γ . (18)

Theorem 5.4 (Action-dependent Hamilton–Jacobi theorem). Let γ be a section of π t,z
Q :R × T∗ Q ×R →R × Q ×R such that Imγ

is a coisotropic submanifold of (R × T∗ Q ×R, τ , η). Then, Xγ
H and XH are γ -related if and only if equation (18) holds. This equation 

will be called the action-dependent Hamilton–Jacobi equation for (R × T∗ Q ×R, τ , η, H).

Definition 5.5. Let (R ×T∗ Q ×R, τ , η, H) be a cocontact Hamiltonian system. A complete solution of the action-dependent 
Hamilton–Jacobi problem for (R × T∗ Q ×R, τ , η, H) is a local diffeomorphism � : R × Q ×Rn ×R →R × T∗ Q ×R such 
that, for each λ ∈Rn ,
15
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�λ : R× Q ×R −→ R× T∗ Q ×R(
t,qi, z

)
�−→ �

(
t,qi, λ, z

)
is a solution of the action-dependent Hamilton–Jacobi problem for (R × T∗ Q ×R, τ , η, H).

Let α : R × Q × Rn × R → Rn , and πi : Rn → R denote the canonical projections. Let us define the functions f i =
πi ◦ α ◦ �−1 on R × T∗ Q ×R, so that the following diagram commutes:

R× Q ×Rn ×R R× T∗ Q ×R

Rn R

�

α
�−1

f i

πi

Theorem 5.6. Let � : R × Q ×Rn ×R →R × T∗ Q ×R be a complete solution of the action-dependent Hamilton–Jacobi problem 
for (R × T∗ Q ×R, τ , η, H). Then,

(i) For each i ∈ {1, . . . , n}, the function f i = πi ◦ α ◦ �−1 is a constant of the motion. However, these functions are not necessarily in 
involution, i.e., { f i, f j} �= 0.

(ii) For each i ∈ {1, . . . , n}, the function f̂ i = g fi , where g is a dissipated quantity, is also a dissipated quantity. Moreover, if Rt H = 0
and taking g = H, these functions are in involution, i.e., { f̂ i, f̂ j} = 0.

Proof. Observe that

Im �λ =
n⋂

i=1

f −1
i (λi) ,

where λ = (λ, . . . , λn) ∈Rn . In other words,

Im �λ = {x ∈R× T∗ Q ×R | f i(x) = λi, i = 1, . . . ,n} .

Therefore, since XH is tangent to any of the submanifolds Im �λ , we deduce that

XH ( f i) = 0 .

Moreover, we can compute

{ f i, f j} = 
(d f i,d f j) − f i Rz( f j) + f j Rz( f i) ,

but


(d f i,d f j) = 
̂(d f i)( f j) = 0 ,

since (T Im �λ)
⊥ = 
̂((T Im �λ)

◦) ⊂ T Im�λ , so

{ f i, f j} = − f i Rz( f j) + f j Rz( f i) .

By Proposition 3.6, we already know that the product of a conserved quantity and a dissipated quantity is a dissipated 
quantity. Let f i and f j be conserved quantities and take g = H . Then, by equation (10), { f̂ i, f̂ j} vanishes. �

From a complete solution of the Hamilton–Jacobi problem one can reconstruct the dynamics of the system. If σ is an 
integral curve of the vector field Xγ

H , then �λ ◦ σ is an integral curve of XH , thus recovering the dynamics of the original 
system.

5.2. Integrable contact Hamiltonian systems

Let (T∗ Q × R, η, H) be a contact Hamiltonian system. Recall that the action-dependent Hamilton–Jacobi equation for 
(T∗ Q ×R, η, H) is given by [26]

dQ (H ◦ γ ) + ∂

∂z
(H ◦ γ )γ = (H ◦ γ )L ∂

∂z
γ .

A complete solution of the action-dependent Hamilton–Jacobi problem for (T∗ Q × R, η, H) is a local diffeomorphism 
� : Q ×Rn ×R → T∗ Q ×R such that, for each λ ∈Rn ,
16
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�λ : Q ×R −→ T∗ Q ×R(
qi, z

)
�−→ �

(
qi, λ, z

)
is a solution of the action-dependent Hamilton–Jacobi problem for (T∗ Q ×R, η, H).

Let � : Q ×Rn ×R → T∗ Q ×R be a complete solution of the Hamilton–Jacobi problem for (T∗ Q ×R, η, H). Then,

F = {
Fλ = Im �λ | λ ∈Rn}⊆ T∗ Q ×R

is a foliation in coisotropic submanifolds.
In the symplectic case, since solutions of the Hamilton–Jacobi equation are closed one-forms on Q , the images of a 

complete solution for each choice of parameters λ form a Lagrangian foliation invariant under the action of the Hamiltonian 
flow. This structure is called an integrable system. In analogy, we introduce the following definition:

Definition 5.7. Let (M, η, H) be a contact Hamiltonian system and let F be a foliation consisting of (n + 1)-dimensional 
coisotropic (with respect to the Jacobi structure of the contact manifold) leaves invariant under the flow of the Hamiltonian 
vector field XH . Then we call (M, η, H, F) an integrable system.

Remark 5.8. Each of the leaves Fλ is invariant under the flow of XH and X fi . Since Fλ is an (n + 1)-dimensional manifold 
with n + 1 independent and commuting tangent vector fields, if the vector fields are complete, by [3, Ch. 10, Lem. 2] it is 
diffeomorphic to Tk ×Rn+1−k , where Tk is the k-dimensional torus.

The definition above can be compared to the ones given in [4,59]:

• In [4], Boyer proposes a concept of completely integrable system for the so-called good Hamiltonians, that is, the 
Hamiltonian function is preserved along the flow of the Reeb vector field. This is a particular case of our definition, in 
which both the Hamiltonian and the constants of the motion do not depend on z.

• In [59], Khesin and Tabachnikov call a foliation co-Legendrian when it is transverse to H and TF ∩H is integrable. Then 
they define an integrable system as a particular case of a co-Legendrian foliation with some extra regularity conditions. 
In the case that the dimension of the leaves is n + 1, the following proposition shows that co-Legendrian foliations are 
particular cases of coisotropic foliations.

Proposition 5.9. Let i : N ↪→ M be a submanifold of a (2n + 1)-dimensional contact manifold (M, η). If N is an (n + 1)-dimensional 
co-Legendrian submanifold, then it is also a coisotropic submanifold.

Proof. Let us write TN =DH ⊕E , where DH = TN ∩H. Then, TN⊥ =D⊥
H ∩E⊥ . Obviously, η vanishes in TN ∩H. Moreover, 

since DH is integrable,

0 = η([v, w]) = ι[v,w]η = Lv ιwη − ιwLvη = −ιw ιv dη − ιw dιvη = −ιw ιv dη ,

for any v, w ∈ DH , so dη|DH = 0. Observe that 
̂|H = �|H , and �|H : H → 〈R〉◦ , �−1
|H(v) = ιv dη is an isomorphism. Since 

dη|DH = 0, �−1
|H(DH) ⊆ D◦

H . Thus, DH ⊆ 
̂(D◦
H) = D⊥

H . By a dimension counting argument, we can see that both spaces 
are equal and, thus, DH =D⊥

H . �
We also note that a foliation F̃ by Legendrian submanifolds can never be invariant by the Hamiltonian flow. Indeed, let 

F̃ ∈ F̃ . The leaves of F̃ are Lagrangian, thus T F̃0 ⊆ kerη. Since η(XH ) = −H , XH can only be tangent to the leaves at the 
zero set of H , hence its flow cannot leave invariant the whole foliation.

Observe that Definition 5.7 can be naturally extended to cocontact Hamiltonian systems.

Definition 5.10. Let (M, τ , η, H) be a cocontact Hamiltonian system and let F be a foliation consisting of (n +2)-dimensional 
coisotropic leaves (with respect to the Jacobi structure of the cocontact manifold) invariant under the flow of the cocontact 
Hamiltonian vector field XH . Then we call (M, τ , η, H, F) an integrable cocontact system.

5.3. Example 1: freely falling particle with linear dissipation

Consider a particle of time-dependent mass m(t) which is freely falling and subject to a dissipation linear in the velocity 
with proportionality constant γ . The Hamiltonian function H :R × T∗R ×R →R is given by

H(t,q, p, z) = p2

+ m(t)gq + γ
z ,
2m(t) m(t)

17
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where g is the gravity. The Hamiltonian vector field corresponding to this Hamiltonian function is

XH = ∂

∂t
+ p

m(t)

∂

∂q
−
(

m(t)g + γ

m(t)
p

)
∂

∂ p
+
(

p2

2m(t)
− m(t)gq − γ

m(t)
z

)
∂

∂z
.

Its integral curves (t(r), q(r), p(r), z(r)) satisfy the system of differential equations

ṫ = 1 , q̇ = p

m(t)
, ṗ = −m(t)g − γ

m(t)
p , ż = p2

2m(t)
− m(t)gq − γ

m(t)
z .

Combining the second and third equations, we get

d

dt
(m(t)q̇) = −m(t)g − γ q̇ .

In order to solve the Hamilton–Jacobi problem, we look for a conserved quantity linearly independent from the Hamil-
tonian, i.e., a function f on TR ×R such that XH f = 0. For the sake of simplicity, one can assume that f does not depend 
on q or z. Indeed, one can verify that

f (t,q, p, z) = e
∫ t

1
γ

m(s) ds

⎛⎝p + ge− ∫ t
1

γ
m(s) ds

t∫
1

e
∫ u

1
γ

m(s) dsm(u)du

⎞⎠
is a conserved quantity. We can thus express the momentum p as a function of t and a real parameter λ, namely,

P (t, λ) = e− ∫ t
1

γ
m(s) ds

⎛⎝λ − ge− ∫ t
1

γ
m(s) ds

t∫
1

e
∫ u

1
γ

m(s) dsm(u)du

⎞⎠ ,

and obtain a complete solution of the Hamilton–Jacobi problem for H :

φλ : (t,q, z) �−→
⎛⎝t,q, p ≡ e− ∫ t

1
γ

m(s) ds

⎛⎝λ − ge− ∫ t
1

γ
m(s) ds

t∫
1

e
∫ u

1
γ

m(s) dsm(u)du

⎞⎠ , z

⎞⎠ .

In this case, equation (17) holds trivially, so Im �λ is coisotropic.
In addition, one can verify that

k(t,q, p, z) = p + ge− ∫ t
1

γ
m(s) ds

t∫
1

e
∫ u

1
γ

m(s) dsm(u)du = e− ∫ t
1

γ
m(s) ds f (t,q, p, z)

is a dissipated quantity, that is, {k, H} − Rtk = 0.

5.4. Example 2: damped forced harmonic oscillator

Consider the product manifold R × T∗R ×R with natural coordinates (t, q, p, z). The Hamiltonian function

H(t,q, p, z) = p2

2m
+ k

2
q2 − qF (t) + γ

m
z

describes a harmonic oscillator with elastic constant k, friction coefficient γ and subjected to an external time-dependent 
force F (t) [21].

The Hamiltonian vector field is

XH = ∂

∂t
+ p

m

∂

∂q
+
(
−kq + F (t) − p

m
γ
) ∂

∂ p
+
(

p2

2m
− k

2
q2 + qF (t) − γ

m
z

)
∂

∂z
,

and its integral curves (t(r), q(r), p(r), z(r)) satisfy

ṫ = 1 , q̇ = p

m
, ṗ = −kq + F (t) − p

m
γ , ż = p2

2m
− k

2
q2 + qF (t) − γ

m
z .

Combining the second and the third equations above, we obtain the second-order differential equation

mq̈ + γ q̇ + kq = F (t) ,
18
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which corresponds to a damped forced harmonic oscillator. One can check that the function

g(t,q, p, z) = e
γ t
2m

(
sinh

(
κt
2m

)
(2kmq + γ p)

κ
+ p cosh

(
κt

2m

))
−

t∫
1

F (s)e
γ s
2m

(
cosh

( κs

2m

)
+ γ sinh

(
κs
2m

)
κ

)
ds ,

where κ =√
γ 2 − 4km, is a conserved quantity. It is worth noting that, since sinh = x +O(x3) and cosh x = 1 +O(x2) near 

x = 0, sinh(ix) = i sin x and cosh(ix) = cos x, the equation above is well-defined and real-valued for any of κ ∈ C. Thus, we 
can write p in terms of t, q, z and a real parameter λ as

P (t,q, λ, z) =
e− γ t

2m

(
κ
∫ t

1 e
sγ
2m F (s)

(
cosh

(
κs
2m

)+ γ sinh
(

κs
2m

)
κ

)
ds − 2kmqe

γ t
2m sinh

(
κt
2m

)+ κλ
)

γ sinh
(

κt
2m

)+ κ cosh
(

κt
2m

) ,

and obtain a complete solution of the Hamilton–Jacobi problem:

�λ : (t,q, λ, z) �→ (t,q, p ≡ P (t,q, λ, z) , z) .

Obviously equation (17) is satisfied, hence Im �λ is coisotropic. In addition,

f (t,q, p, z) = e− γ t
m

[
e

γ t
2m

(
sinh

(
κt
2m

)
(2kmq + γ p)

κ
+ p cosh

(
κt

2m

))

−
t∫

1

e
sγ
2m F (s)

(
cosh

( κs

2m

)
+ γ sinh

(
κs
2m

)
κ

)
ds

⎤⎦ ,

is a dissipated quantity.

6. Conclusions and outlook

The main contributions of the present paper are the following:

• We have obtained two different Hamilton–Jacobi equations for time-dependent contact Hamiltonian systems: the so-
called action independent and action-dependent approaches. In particular, the action-independent approach is useful 
for time-independent contact Hamiltonian systems, where the use of time as a free parameter allows to integrate 
the system at non-zero energy levels. In addition, we have introduced a notion of complete solution in the action-
independent approach. Each of these complete solutions is associated with a family of n + 1 independent dissipated 
quantities in involution (where n is the number of degrees of freedom of the system).

• The action-dependent approach also permits to introduce a natural notion of complete solution to the Hamilton–Jacobi 
problem. Each of these complete solutions is associated with a family of n independent dissipated quantities in involu-
tion. Moreover, the image of a complete solution is a coisotropic submanifold.

• We introduce a new notion of integrable system in a contact manifold, taking into account the dynamics given by the 
Hamiltonian vector field, and extending the concept of complete solution. This allows us to study the dynamics outside 
the zero-energy level.

As we have pointed out in Remarks 4.7 and 5.8, there is a relationship between solutions of Hamilton–Jacobi equations 
and several notions of integrability. Namely, the existence of foliations by coisotropic tori, integrability by quadratures and 
the construction of action-angle coordinates. Further research is needed to clarify these notions and their relationships in 
contact Hamiltonian systems.

Other topics for future research include the reduction problem, the Hamilton–Jacobi equations for the evolution vector 
field and its possible applications to thermodynamics as well as the extension to higher order systems. The study of the 
discrete Hamilton–Jacobi equations and applications to the construction of geometric integrators is also on the agenda.
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